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ABSTRACT

The effect of semi-elliptical cracks on the structural integrity of a
tubular welded joint has been considered by evaluating stress
intensity factors by a finite element method which uses three
dimensional brick elements and a method involving elastic line
springs used in conjunction with shell elements. The brick element
model has been used to determine J under elastic-plastic conditions
for two different strain hardening rates.
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INTRODUCTION

The integrity of offshore oil structures is critically dependent on the
behaviour of tubular welded joints which are subject to fatigue
loading due to the action of the environment. Although design is
usually based on an S-N approach, periodic inspection of the
structures frequently reveals the presence of semi-elliptical cracks
at sites of stress concentration near the chord-brace intersection.
The development of such cracks under fatigue loading has been the
object of experimental studies, by Dover and co-workers(1982) and
Ritchie et al.(1987). To complement the experimental studies
numerical analysis are performed by several methods, including,
weight functions(Niu et al.,1986) ; line-springs(Rice et al., 1972)
used in conjunction with finite element shell analysis; and virtual
crack extension (Parks,1974) used in conjunction with brick
elements. ; ¢
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Although the development of the cracks by fatigue can be largely
understood by reference to linear elastic fracture mechanics, it is
necessary to determine the conditions under which cracks propagate
under the overloads which arise in storm conditions. In order to
ensure structural integrity under these conditions it is necessary to
understand the elastic-plastic behaviour of tubular welded joints
containing semi-elliptical defects.

FINITE ELEMENT MODELS AND NUMERICAL METHOD

In the present work a tubular welded T-joint, the geometry of which
is shown in Figure (1) has been examined. The tubular members were
modelled with eight noded isoparametric doubly-curved shell
elements while the critical region of the chord-brace intersection
was initially modelled with twenty noded hybrid brick elements
provided by the finite element code ABAQUS (1982). Compatability
between the shell and brick elements was maintained by the use of
transition elements with 18, 15 and 12 nodes produced by
degenerating 20 noded hybrid brick elements using appropriate
multi-point constraints.

Mesh generation was accomplished using commercial codes, the
results of which were subsequently optimized for frontal solution ,
by renumbering the elements following the procedure given by Sloan
and Randolph (1983). The models were subject to a uniform axial
force on the brace while the ends of the chord were built in.
Symmetry of the configuration, allows the structure to be
represented by one symmetric quarter as shown in Fig.(2). The
models involved approximately 12000 degrees of freedom. The
problems were analysed on a Cyber 205 computer and required about
320 seconds cpu time,for an elastic solution. The same problem was
also modelled using only eight noded doubly curved shell elements,
while the semi-elliptical crack was represented by the linear elastic
line spring concept of Rice and Levy(1972) as implemented in the
ABAQUS(1982) finite element code. This formulation involved 4000
degrees of freedom and 56 cpu seconds. Further details of the elastic
calculations and a comparison of the two calculation methods are
given by Du and Hancock(1988),

In the present work attention is largely focussed on elastic-plastic
behaviour using the formulation involving twenty noded hybrid brick
elements although current work involves the use of non-linear line-
springs. Full plasticity of the uncracked ligament was typically
achieved in 50 increments each of which used about 4 iterations
usina a Newton method to obtain equilibrium with a Jacobian formed

308

from the elastic-plastic tangent stiffness and requiring a total cpu
time of the order of 40,000 seconds.

1/T=0.79
r/R=0.71

R/T=14.4
L/R=10

Brace

Figl.) The geometry of the tubular welded joint.

Fig 2.) A finite element mesh using shell and brick elements.

The cracks were located at the site of maximum stress
concentration which under axial loading is situated at the toe of the
weld adjacent to the saddle point as shown schematically in Fig (1).
The cracks are formed on the chord side of the chord-brace
intersection and two crack geometries have been analysed .These
consist of semi-elliptical cracks with a maximum depth to thickness
ratio a/T of 0.6 and 0.9, and a surface length 2c/T=4, where T is the
thickness of the chord. The three dimensional elements were
arranged as a focused mesh with three rings of elements concentric
with the crack tip . In the inner ring of elements the mid-side nodes
were located at the quarter point positions : a procedure which
allows the elements to adopt the correct form of displacement
function for the elastic singularity, as discussed by Barsoum(1976)
and Henshell and Shaw(1975) . The stress intensity factors were
determined by evaluating the J integral around three crack tip
contours using virtual crack extension (Parks, 1974) . Although J was
largely path independent , the values obtained entirely from the
second contour using the outer corner nodes of the second ring of
elements were preferred. Experience with this contour shown to
produce the most reliable data,for reasons that are "generally
considered to be more fortuitous than fundamental”.

The crack front was represented by four elements sets with
boundaries orthogonal to the crack front thus providing nine sites at
which J could be determined. Due to the curvature of the crack front,
the final ring of elements at the intersection with the chord surface

AFR-1—L
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was somewhat distorted and the contour using the midside nodes of
these elements has been consequently ignored.

As three dimensional elastic-plastic problems are demanding, both
in terms of computer storage and cpu time,the number of rings of
element sets concentric with the crack tip was necessarily limited
to three. To assess the accuracy of the solutions preliminary bench-
marking calculations were undertaken using a plane strain edge
cracked bar with an (a/W) ratio of 0.5 and the same crack tip
element configuration and material response as the tubular welded
joint. J was determined by the virtual crack extension method of
Parks(1970) as implemented in ABAQUS and the results compared
with formulae proposed by Kumar and co-workers(1981) for tension.
The results agree to within 0.3% for the elastic problem, while at an
applied load equal to twice the non-hardening limit load, Po, the
results agreed to within 4.5%. The results for the tubular joint
problem in which the crack tip elements have a similar
configuration, may be expected to have a similar accuracy which is
considered to be acceptable for the current problem.

In all cases the uni-axial material behaviour for the purpose of the
analysis was modelled by a Ramberg-Osgood relationship of the form:

eleg = o/og+a(c/og) (1)

Poisson's ratio was set at 0.3, a at 3/7, while the ratio of the yield
stress o, to the elastic modulus E was 0.001. The finite element
analyses were based on small strain theory and employed the
Prandtl-Reuss flow rule (Jo plasticity). The incremental form of
this relationship is,

55ij/eo=(1“’)d°ij/°o'\’d°kk/°05ij+3/2”“(Ue/GO)n'ZSij/Godceloo (2)
where s;jj are the stress deviators and og is the equivalent stress.

RESULTS

The results of the elastic calculations are given in Figures (3) and
(4) which show the non-dimensionalised J around the crack front for
the two crack geometries (a/T=0.6 and a/T = 0.9 ) using the remote
stress in the brace o. The crack front position is defined by the

distance X from the plane symmetry normalized by the chord..
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thickness T, the deepest point of the crack is thus located at the
origin(X=0). The results of the line spring calculations are compared
with the solutions using twenty noded bricks and agree to within 2.5
and 3.5% at the deepest point. The solutions even agree reasonably
well near the ends of the crack where the physical basis of the line-
spring method is less secure.

a/T=0.6,a/c=0.3 a/T=0.9,a/c=0.45

< 3D-BRICKS

@ 3D-BRICKS - LINESPRINGS

-o- LINESPRINGS

Non-dimensional J
Non-dimensional J

xT xr

Fig 3.) Fig4.) A comparison of the non-dimensionalised
J-EJ/02(1-02)3 around the crack front
from the line -spring and brick element
calculations, where ¢ is the remote
applied stress. X/T is defined as the

normalized distance from the plane
symmetry.

Under elastic-plastic conditions attention is focused on the deepest
point of the crack where the development of J with applied load is
given in Figures(5) and (6) for (n=3) and (n=13) for both crack depths.
The result are presented in a non-dimensional form in which J is
non-dimensionalized with respect to the yield stress o, and the
maximum crack depth a. The relations between force and the load
point displacement v are shown in Fig(7) and (8).

The results of the elastic-plastic calculations are expressed,
following convention, as the sum of elastic and plastic terms. The
elastic results may be written in the form

Je = o,4e4af®(a/T)(P/Pg)2 @)

where P is the applied force on the brace,and Pg is a reference load

AFR-1—L*
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Fig.7) Fig.8) The relationship between the applied

load and the load point displacement

which is usually taken to be the limit load for a perfectly plastic
material. In the case of tubular welded joints it is convenient to take
Po as the load to cause full plasticity of the brace remote from the

joint i.e. 2nRto, J is written as the sum of elastic and plastic terms

it is however usual to use Irwin's plastically adjusted crack length
(ag) to provide a smooth interpolation between the elastic and
plastic terms

ag =a+ry o (4)
where R
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ry =1/6n* (n-1)/(n+1)(Ky/c()? &
o = 1/(1+(P/Pg)?) &

and the total J is

J = J(ae)+Jp (7)

The plastic component must adopt the dimensional form given by
Goldman and Hutchinson (1975):

Jp = acyeqafP(a/T,n)(P/Pg)N+1 (8)

Calculations with strain hardening exponents n=3 and 13 show that
the plastic component Jp is indeed proportional to PN"+1 and the

corresponding values of the geometric functions fP and f© are given
iin table (1)

Table 1. fP and f® as a function of a/T and n

a/T=0.6 a/T=0.9
n=1 70.3 12.4
n=3 1080.1 138.3
n=13 3.8E6 8.86ES5

Discussion

A feature of the stress intensity factors of semi-elliptical cracks in
tubular welded joints is that the stress intensity factor does not
increase markedly with crack length.(Dover at al., 1982; Ritchie et
al., 1987, Huang and Hancock, 1988). In fact, in the present case at
constant applied load the stress intensity factor decreases with
crack length over the range (a/T>.0.6). Under elastic-plastic
conditions, with a constant applied load, the tearing modulus
(dJ/da)/E is also negative implying that an increasing load history is
required to maintain elastic-plastic growth at the deepest point, for
cracks of depth greater than (a/T=0.6). As the crack develops in the
through thickness direction the loads to produce a given remote
displacement are similar for both a/T=0.6 and 0.9 under elastic-
plastic conditions, and this parallels the elastic observation(Huang
and Hancock, 1988) that the stiffness of the joint is maintained until
cracks penetrate the chord wall,when it susequently undergoes a
ranid decav. As the ioint stiffness is maintained nntil the chord is
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penetrated, constant remote loading and displacement conditions
produce similar results, and the tearing modulus will be negative
for both cases favouring stable crack growth in the through
thickness direction,
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