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ABSTRACT

Comparisons of experimental data on the effect of material structure on the composite fracture
properties of concrete with a recently developed theoretical model is presented. The meso-scale
theoretical model of tension-softening behavior is based on the initiation and spreading of a
dominant crack from the largest aggregate particle, subsequently intersecting other aggregates in
its path, followed by complete material separation of the eventual crack plane by frictional pull-
out of the aggregates. The limited but favorable comparisons between data and the theoretical
predictions suggest the usefulness for further investigation into this preliminary model.
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INTRODUCTION

It has become increasingly clear that the post-peak tensile behavior of concrete plays an
important role in controlling the deformation behavior of concrete structural members. Recent
computational mechanics studies of concrete structures (e.g. Hillerborg et al, 1976, Ingraffea
and Gerstle, 1985) have used such post-peak behavior, often termed the tension-softening
curve, as a constitutive relation for describing the fracture process zone, in a concrete structure
loaded to failure. The tension-softening curve may be regarded as a non-linear fracture
'parameter’, and the area under this curve has been shown through a J-integral analysis (Rice,
1968) to be equal to the fracture energy of concrete. Use of the tension-softening curve in
cohesive crack models has already led to explanations of size-effect of concrete structural
members and possible concrete structure design-code revisions (Hillerborg, 1986, 1988).
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Several pieces of recent work (Mihashi, 1988, Wittmann et al, 1988, Comelissen et al, 1986)
have focused on experimental studies of the effect of varying the internal structure, specifically
the aggregate size, volume fraction, and water/cement ratio, on the fracture properties of
concrete. In this paper, a simple theoretical model on the meso-scale (Huang and Li, 1988) is
briefly reviewed. The model predictions in relation to experimental results are discussed. In
spite of the highly idealized nature of the theoretical model, most of the experimental results to
date can be explained and interpreted in the context of this theoretical model.

A MODEL FOR TENSILE STRENGTH

Concrete is modelled as a solid with 'meso cracks of random location. These cracks arise
because of interfacial weaknesses betweenaggregates and the cement matrix. In concrete, the
aggregate size is usually graded, and the Fuller distribution is a commonly adopted one. In the
present model, the initial size of the cracksat peak load is assumed to be equal to the aggregate
size, and the mesocrack size distribution istherefore also described by the Fuller curve (Figure
1). In fact prior to peak load, stable propagation of the interfacial cracks around the aggregates
could occur, leading to pre-peak inelastic deformation (Huang and Li, 1988). The present
model assumes that the tensile strength coincides with the branching of the largest interfacial
crack into the cement matrix. Propagation of this dominant crack then leads to formation of the
eventual fracture plane. Thus
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in which a is a correction factor introducedto account for the interaction of the dominant crack
with neighboring interfacial cracks at peak load, to be discussed later. The effective toughness
K c®ffis the cement matrix toughness K™ modified by the factors f; and f3
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Fig 1 Simulated structure of concrete with (a) aggregates having random geometry, (b)
aggregate size distribution following Fullercurve, (c) crack distribution at tensile strength.
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f1 and f2 have been introduced to account for the interaction of the propagating dominant crack
with intersecting aggregates and to account for the shielding effect on the dominant crack due to
the presence of other presumably arrested interfacial cracks.

To account for the deflection of the dominant crack due to aggregate interception, the model of

Faber et al (1983) was applied. Extension of the deflected portion of the crack was considered
to be governed by the requirement that the reduced stress intensity factor at the deflected crack
tip reaches the matrix toughness. Since the dominant crack can intercept an aggregate at any
position, the stress intensity factor averaged over all possible deflecting angles was calculated
based on a probabilistic analysis. The result is

f=,/1.0+087 V, @)

where Vi is the volume fraction of aggregate. For V¢=0.1, 0.3, 0.5, and 0.7, f| = 1.04, 1.12,
1.20 and 1.27.

The formation and propagation of a dominant crack implies a stress relaxation and possibly
closure of interfacial cracks in the material remote from the dominant crack. However, in the
zone of material ahead of the dominant crack, the high tensile stress there would keep the
interfacial cracks open, resulting in a material with Young's modulus effectively smaller than
that of the original uncracked material. By considering the path independence of the J-integral,
Evans and Faber (1983) showed that the dominant crack tip stress intensity factor is lowered by
the reduced local modulus, resulting in a toughening effect. Hence

f2=\/Em(l—V)/E(l—Vm) @

where Enp is the Young's modulus for the material devoid of cracks, E is the modulus with

interfacial cracks, and v, vy, are the corresponding Poisson's ratios. By using the self-

consistent technique employed by Budiansky and O'Connell (1976) in treating the distributed

cracked body, Huang and Li (1988) found
E __mg_ye )
g =l-1g4-vHYV,

Substitution of (5) into (4), assuming Vv = v, results in the toughness increase:
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For v = 0.2, and V¢ =0.1, 0.3, 0.5, and 0.7, f = 1.03, 1.1, 1.19, and 1.30.

The stress intensity factor (SIF) of the dominant crack when it propagates into the matrix may
be expected to be raised as a result of interaction with neighboring interfacial cracks.

Effectively, the tensile strength is reduced by the factor cin (1).
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The interaction problem is simplified as a dominant crack of length 2Ry interacting with all
other cracks of average length 2Rayg. For Fuller distribution, Rayg=1/3Rmax. The stress field
generated by the average length crack at the dominant crack face is evaluated, which gives an
additional contribution to the SIF at the dominant crack tip. By adding this part of SIF to the
one associated with the ambient tensile stress, the increase in SIF at the dominant crack tip is
calculated, so that the factor o in (1) is given by
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where a=Rmax, b=Rayg, =Rmax+[V(/Vp)-11Rayg.

A MODEL FOR POST-PEAK TENSION-SOFTENING BEHAVIOR

The post-peak behavior of concrete is assumed to have two main failure mechanisms: a crack-
like deformation controlled mode and an aggregate frictional pull-out mechanism.

At the beginning of the post-peak stage, the progressive formation of the failure plane is
modelled as the expansion of the dominant crack, and the crack opening displacement, 8, is
equated to the average opening contribution of this dominant crack. The propagation of this
crack within the matrix is governed by the equation:

o/m(L +R ) =K ®)

where © is the ambient tensile stress, L is the length of crack in the cement matrix. Each time
the dominant crack intercepts an aggregate, it may join with the interfacial crack at the aggregate
interface, leading to a jump of dominant crack length by aggregate diameter. Including the
jumping effect and relating average opening  to the crack length L, the resulting tension-
softening curve is obtained:
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In the final stage of an uniaxial tension failure, a macroscopic fracture plane forms through the
cross-section of the specimen. The coarse aggregate particles are subsequently extracted from
either face of the fracture plane. In the model, a material parameter, 1, is introduced, which
defines the roughness of the aggregate surface. We envision that the aggregate can be
completely pulled out when the roughnesson the aggregate surface is being sheared off. By
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geometrical analysis, the critical opening 8 is related ton and the maximum aggregate size:

3.=+/2RM (10)

Assuming that the cement matrix is very brittle so that the load is carried by the frictional force at
the interface of the aggregate at the pull-out stage, and considering the equilibrium condition, the

relation between stress & and crack opening 3 is obtained:
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where T* is the interfacial shear strength. The combination of the crack-like deformation
controlled stage and the frictional pull-out stage gives the complete tension-softening curve.
The fracture energy G¢ may be obtained by integrating the area under the 63 curve.

COMPARISONS OF MODEL PREDICTIONS WITH EXPERIMENTAL DATA

Based on the model presented above, it is possible to predict the tension-softening curve of
concrete. Figures 2a and 2b shows two such predictions using model parameters consistent
with the actual values of the particular concretes from which experimental data have been
obtained. The only uncertain parameter is the matrix toughness, which was not reported as part
of the experiments, and a typical range of K{c™M=0.25 to 0.35 MPa Vm was used. The two
concretes having different values of Young's modulus E produce different predicted tension-
softening curves. The comparisons between the model predicted and experimentally deduced
tension-softening curves appear quite satisfactory.

The model predicts that concrete strength will moderately increase with aggregate volume
fraction when Rmax is fixed. This is shown in Fig 3 together with experimental data from
Stock et al (1979). The present model is not appropriate for predicting the strength of plain
cement (at V¢ = 0). At high volume fraction (V¢>0.78), the interaction analysis predicts o --> 0
due to cracks intersecting each other, so that the basic assumption of a dominant crack
propagating into a matrix breaks down.

There have been several studies of the fracture energy of concrete with different maximum
aggregate size Dmax = 2 Rmax. Figure 4 shows a collection of such data (Hillerborg, 1984,
Mihashi, 1988) and a trend of increasing G¢ with Dmax indicated by the linear regression line. It
should be noted that Dmax and Vg are not independent quantities for concrete, but are related by
design rules to maintain workability in the fresh state. The model predicted trends are also
presented, for three values of matrix toughness.

The value of critical opening 8¢ was examined as a function of maximum aggregate size Dmax
by Mihashi (1988) experimentally. His data is plotted in Fig 5 normalized against the 8¢ value
for the concrete with Dmax = 32 mm. The model prediction is also shown. In the normalized

form, the unknown roughness parameter 7 is not needed in the calculation.
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Fig 3 Vi-dependence of predicted tensile strength and data from Stock et al (1979).
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data from Hillerborg (1984).

It may be expected that the cement matrix toughness will increase with decreasing w/c ratio, and
with age. Such is indicated in an experimental test of notched 3-point bent cement beams
(Figure 6, Zielinski, 1983) . However, the fracture toughness of pure cement and that of
cement as a matrix in a concrete may not be the same, especially for the cement matrix in the
neighborhood of an aggregate. For this reason, the information provided in Fig 6 can only be
used in our model with the understanding that it represents an approximation of the actual
cement matrix toughness.
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Fig 6 Fracture toughness of cement paste (Zielinski, 1983).

Wittmann et al (1987) studied the effect of w/c on the tensile strength of concrete with different
aggregate size. Their data, in normalized form, is presented in Fig 7, together with model
prediction based on (1), in which the matrix toughness K™ is regarded as a function of w/c, as
extrapolated from the data in Fig 6. Wittmann et al (1987) also studied the effect of concrete
fracture energy as a function of w/c ratio, and his normalized data is shown in Fig 8. Model
prediction is overlaid on the same figure.
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CONCLUSIONS

The composite tensile strength, post-peak tension-softening behavior, fracture energy and
critical separation of concrete are related to the aggregate volume fraction, maximum aggregate
size, cement matrix toughness, and indirectly to the w/c ratio, through a theoretical model of a
crack spreading from the interface of the largest aggregate into a heterogeneous matrix.
Comparisons with experimental data on such fracture properties using concrete with variable
material structures provide encouraging support, even though the model includes several critical
simplifying assumptions which may require further verification. As an example, the present
model assumes that the interface between aggregate and matrix is the weak link, and the
dominant crack always propagate from the largest aggregate. An experimental program is now
underway to examine the validity of such assumptions.

The present model may be useful in describing the fracture behavior of other brittle composites
containing second phase particles with weak interfaces.
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