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ABSTRACT

Elastic waves in bounded regions represent a problem of dynamic stress
concentration closer to practical applications than corresponding
investigations on the scattering of waves by a discontinuity in unbounded
media. Supplementing recent considerations of steady-state stress
concentrations in an annular disk, here transient waves in such structures
are considered. In particular, a disk subjected to a locally concentrated
impact in the form of a radially directed Heaviside step function is
discussed in detail.
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INTRODUCTION

One of the major applications of the theory of elastostatics is the
determination of stress concentrations in a body with holes or other
similar discontinuities. Since the late 1950s, many researchers have
extended such investigations to the dynamic case, e.g., Jimbo and
Nishimura (1954), Pao (1962) or Itou (1983). <Common to all of the
mentioned contributions is the fact that they discuss the scattering of
waves in unbounded regions.

As far as the authors are aware, dynamic stress concentrations in finite
media - including damping - were first analyzed by Wauer (1983), who
considered the simplest case of an annular disk under a circumferentially
constant, radially directed, time-harmonic loading at the outer surface (a
related paper by Boroskowsky et al. (1982) discussed only the vector field
of displacements for a cracked disk and a contribution by Atluri et al.
(1979) considered propagating cracks in finite bodies).

Maass (1986) extended the results to more general disk geometries and
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arbitrarily distributed circunferential load configurations. He also
presented the first results on transient stress concentrations. But since
the expense of calculations increases rapidly, in the latter case he
restricted his examples to amular disks under rotationally symmetric,
radially directed loads again. As prototypes of transient sources,
Heaviside and Dirac functions were introduced. It will be noticed that
about the same time a paper by Kraft (1985) studied similar problems but
was purely numerical, using finite-element methods.

The aim of this contribution is to extend Maass's fundamental results on
transient stress concentraticns in annular disks to circumferentially
nonuniforn impact loads, here in the form of Heaviside step functions. As
a practical solution technique, a modal expansion into a series will be
used.

ELASTODYNAMIC FUNDAMENTALS AND THE APPLICATION
TO A THIN ANNULAR DISK

It will be assumed that the material is homogeneous and isotropic, and
that all displacements are sc small that a linear theory is sufficient.
This linear theory of elastodynamics is embodied in a set of equations
(Eringen and Suhubi (1985), Achenbach (1975), for instance) defined for a
body of volume V enclosed by a surface S =5, + S,. In particular, we have
the equations of motion, the strain-displacement relations and Hooke's law
for an elastic body. There are added corresponding boundary conditions on
S, (prescribed displacements] or S, (prescribed stresses) and initial
conditions.

Eliminating the strain and stress tensor leads to Lamé- Navier's classical
equation of motion for an isotropic, homogeneous, 3-dimensional elastic
body expressed in displacement quantities only. It can be stated here that
an extension to a viscoelastic solid is possible without fundamental
difficulties (Maass, 1986).

In the case of thin disks to be studied here, the governing vector
equation of motion can be modified in the sense of a generalized stress
state (MuBchelischwilli, 1971)
2px 3?2
+ VY .u + pu + k= p-5 U (1
[x+2u “] A+ EETL® Fgp= )

The original boundary and initial conditions remain formally unchanged. Vv
denotes the well-known Nabla operator, u is the vector of displacements
and p the mass density. X\ u are Lamé's constants characterizing an
isotropic, homogeneous elastic material, and by the vector k volume forces
are taken into consideration.

The elastodynamic basic equations will be applied to an annular disk (see
Fig. 1) with constant thickness b, inner and outer radii R; and R,, excited
by a radially directed space-and-time-dependent stress per unit length
o,{e,t)/R, at the outer surfice r = R,- The inner edge will be free of
stress. An adequate co-ordinite systenm describing the governing boundary
value problem is a frame of polar co-ordinates r,¢ with the unit base
vectors e, &,. The corresponding space-and-time-dependent displacements
are u.(r,¢,t) End u (r,e,t), combined in the vector u = (ur,uw)T, where the
superscript T denotes transposition.
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It is assumed that the disk is at in rest for t ¢ 0. First of all, it
follows that the initial conditions are homogeneous:

u(r.¢,0) =0, o

3
— ulr,¢,0) = 0.
ot ) )
Next, the excitation has to be incorporated. Here, it will be done by

S o(t)

G o(t)

Fig. 1. Physical model

homogeneous dynamic boundary conditions
on(RP¢'t) = oﬁ(Ra,w,t) =0, @3
aw(Ri,cp,t) = onP(Ra,<p,t)= 0

(surface parts S,, where displacements are prescribed, will not gxist).
The elements of the plane stress tensor can be expressed as functions of

the displacements U, Ug:

E du 1 1 du
e %))
Orr 1-vz[6r +v[r Yty 3¢
o —L£u+£a—u—‘“+v§—g‘-], (4)
99 1-vi|r * r O¢ ar

au, 1
& E [1__8_”L+_u_sa__u].

07 2(1+v) rauq, or r ¥

Instead of Lamé's constants ),u, here and in the folloui‘ng t‘he usgal
technical properties of elasticity E, v (Young's modulus, Poisson's ratio)
will be used.

Since the boundary conditions have been assumed to be homogeneous, 'f.he
excitation has to be included in the body force k using the Dirac function

S(I‘—Ra) B
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k(r,¢,t) = [oo(w,t)ﬁ(r—Ra),O]T. (5)

Finally, carrying out the derivatives in operator form within eq. (1)
leads to the field equations

2
“5’6,;'2’2-@=K(1‘,w.t). M=p[é 0]. (6)
1
a2 1 138 1-v 1 8? 3-v 1 8 1+v 1 8?2
ar r:rar ' 2 r?der | 2 r?ae "2 r arae
g - —E_
1v¥13.01 8 14v1 & |1-vfd 1 18 1 82
TF5_9+T;81-8¢ T[ar_z r2+;§]+r2 3¢?

for an elastic body described in polar co-ordinates. Eq. (6) together with
the relations (2) to (5) define the complete initial boundary value
problem for plane stress vibrations in a bounded annular disk.

In order to limit the expense of calculations, the excitation o,(y,t) in
eq. (5) will be specified here in the form of the simplest
circumferentially non-uniforn, transient load function

oo (e.t) = o5 [B8le—py) + 8¢ —¢o=m)] h(t) 7

(h(t) = Heaviside step function), which means that a concentrated step
pulse with the intensity o, acts on opposite sides of the disk, at an
arbitrary position ¢, and at ¢, +m.

STRATEGY OF SOLUTION

Well-established in the dynamics of vibrating finite beams, plates,
shells, etc. is the solution of the governing boundary value problems by
eigenfunction expansions. Also, for the problem discussed here of
transient elastic waves in a finite region it will be used.

The expansion theorem states (see Eringen and Suhubi (1985), for instance)
that the general solution toegs. (2) to (5) is

u(r,e,t) = ZAQm(r,w) Tm (t), (8)
m
where the vector functions
Up(roe) = [U, (i), Uy, (r,¢)]T (9)

are the corresponding infinitely many eigen functions, which satisfy the
reduced elastic wave equation

KU (r,¢) + w?MU (r,¢) = 0 (10)
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ditions (3) (T(r,¢) will
ally unchanged homogeneous boundary con 3 L
:;:: €32ﬁtif¥ the séiess amplitudes free of time). Thq eigenvalues w% iﬁe
real and non-negative (vanishing eigenvalues can be omitted here), an e
eigenfunctions satisfy the orthonormal conditions.

2 R,

11
J [ uT My, rdrde= 6, (11
@=0 |—=]?ﬁ

where & . denotes Kronecker's delta.

The time functions T (t) are given by

t
T, (t) = w, [ sin w, (£-7) e h (T) d7 (12)

o

(for homogeneous initial conditions (2)), where the weight factors e  can
be easily evaluated in closed form (see Chapter 6).

EIGENFUNCTIONS, EIGENVALUES

The main problem in studying the transient stress concentration problem is
obviously the solution of the corresponding eigenvalue problenm.

i i . (10) is sought by
i urpose, first the general solgtlon to eq ] }
Fggofiysg % (pr ¢ ) into a dilatational field v& and a rotational field
v B " Where e. is the unit base vector in the direction of the
N e et R ni tential ® and the
outer normale of the middle surface. The sc§lar po 5 -
co-ordinate ¥ of the vector potential ¥ satisfy the decoupled scalar

potential equations

ck V¢ + w'e =0, c? v + Wiy = 0,
E 2 1 8 10 (13)
" E c? = . v o= S v T —
= p(1-v?)’ S 2p(1-v) ar r? 3¢ r or
Evaluating the relétion U=7vd+ vV x ¥ in polar co-ordinates,
o + Lo Uy = LB cad (14)

and using the relations (4) between stresses and displacements leads to
the associated boundary conditions

E v

= — |V + 5 +
rrr(r"")lr=Ri,Ra 1+v[1+v or?
E [1 3% 1 8o 1 8%y 1 3%

Ra— 14+v

0

8%¢ 1 9%*Y 1 aw]
r Orde r? de¢

r=Ri,Ra

+
r arde r? d¢ 2r? 3¢* 2 ar?

861



=0 (15)
r=Ri,Ra

L
i

1 a\r]
g i
2r or

expressed in potential properties.

i
i 1;
Rl

. R fiid”
In the next step, a solution of the eigenvalue problem (13), (15) in ‘o / /
product form o
4 i 5
® (r,¢) = P(r)efine, & 3 e
. n=0(1)e, (16) i i
- n -10 =7y 3 Y
¥ (r,¢) = R(r)e¥ine, Felie—p - L e et
ist elgenvalue, = L1, 0=
which satisfies the conditions of 2m-periodicity with respect to ¢, is
assumed.
Substitution into the eqs. (l6) leads to two single Bessel differential
equations
3%p aP o §
¥ X)? — + —+ («®?x?-n2)P = 0, i 3
! (exx) ox? (ox) ax (a?x ) P g
8%R oR ta i
(Bx)? — + (Bx) —+ (B2x*-n?)R =0, n=0(1)=, (17) - —
ax 8x i e e L = = ecigenvalue. slpha= 1.68. n= 1
2p2 22 2nd eigenvalue, alpha= 1.68. o= |
R, Cp Cg 1-v

and boundary conditions for P(x), R(x) at the surfaces x = R/R,, 1, not
explicitly written down here.

5

The solution of the Bessel differential equations (17) can be written in
terms of the Bessel functions J and I of the first and second kind of

order n, so that for a certain order n the solution for the potenials, ¢,¥
can be given as

: ¢

¢

°
g
tangential displacement

- - d ° s
3rd sigenvalue, slphas 1.80. n= 0

radial displacement

B = T N L
3rd eigenvelue, alphas 180, n= 0

®(r,¢) = [AmJn(ax) + Aann(ax)] (B,, sin n¢ + B, cos ne¢),

¥ (r,¢) = [C,3,(Bx) + C,.T,(Bx)](D,, sin ne + D,

e m—

(18)

n COS ng).

Fitting these solutions to the boundary conditions yields a homogeneous
system of algebraic equations to determine the integration constants
A, -..,D,,- The vanishing determinant is a necessary condition for

non-trivial solutions for |} D

inr+--+Dyn. and represents the eigenvalue
equation to be solved numerically.

In a last step, by means of the relations (14), the related displacements
Um+ Ugm: m = 1(1)= as eigenfurctions can be found.

radial displacement
tangential displacement

alee—e————————
fq =8 a4 '

s
4th elgenvalue. alphs

In Fig.

e ST RS A

2 the first four sets of eigenfunctions and the corresponding

eigenvalues « are plotted for a selected set of data, namely R/R, = 0.2,
v = 0.3.

s e

Figure 2. Eigenfunctions
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STRESS CONCENTRATION, RESULTS

It can easily be understood that not only the potentials Q. ¥, (see eq.
(16)), but also the displacerents are representable in product form, e.g.,
as

u Y (r) 0
gm(r,<p):= rm _ m &F . n=0,
U(Pll 0 Y'Pl“(r)
u Y..(r) cos n¢ Y (r) sin ne
Uplr,e)e= | ™| ™ and | ™ .= 1(1)=,
qu -Y‘pm(r) sin ng

le,(r) cos ng

m=1(1)=. (19)
Using eq. (19), the weight factor €, (see eq. (12)),

21 R
= [ [T (0o [Elo-9o) + 8(9-9o-m)]8(r-Rr,), 0)Trdrde (20)
9=0 r=R;
can be specified now:
€ = Yrm(Ra)[cos N, + cos nleg+ n)] and Yrm(Ra)[sin Neg +
+ sin n(<p0+n)], n=0(1)= (21)
It follows that for rotationally symmetric eigenfunctions Upn (n=0) we
obtain
€m = 20, Y, (R,) (22)

(if the eigenfunction is a pirely tangential mode,
identically). For all

then €, Will vanish
other cises the result depends
even or an odd number:

on whether n is an
0,n = 1(2)=

20, Y. (R,) cos n¢,and 2o, Y (R, sin ng,, n = 2(2)=. (23)

The subsequent procedure to find the transient solutio
and stress according to eq. (8) and (4),
out in computer-aided form. in form of a sequence
of plots for 9.(r,¢,t), o, (r,et) and O {rue, L), respectively, for diffe-
rent time steps are shown 'in F'g. 3 (Naumann, 1988). The evolution of the
stress state for increasing tire can be observed in this way. It will be
noticed that in all cases, due to a limited number of terms of a series no
singularities can occur. As kiown from the case of a uniformly loaded
annular disk (Maass, 1986), at different points of the disk a significant
strengthening of the stresses ippears in comparison with the static case
(Carmine, 1988).

ns of displacement

respectively, has to be carried

Scme essential results
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Figure 3. Transient stress

865




CONCLUSIONS

Dynamic stress concentrations in finite structural members with holes or
conclusions etc. comprise an important topic in fracture mechanics. In
many cases, eigenfunction expansion techniques seem to be an efficient
instrument to treat such transient wave phenomena in finite solids. With
an insignificant additional expense of theoretical work in comparison with
finite element methods, for example, the evaluation time by computer is
comparatively short.

Results for transient stress concentrations in annular disks have now been
obtained for circumferentially uniform and locally concentrated step
pulses. In both cases, significant deviations occur in relation to the

corresponding purely static case, in the form of considerable
enhancements
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