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INTRODUCTION

The deformation field of a cracked specimen fabricated from a highly ductile
material is affected by the geometry of the specimen far from the crack tip
and by the details of loading. In this case crack extension is defined by
plastic rotation of specimen or structure subelements, j.e. specimen halves,
and occurs strictly at 1imit load; it cannot be predicted with
single-parameter singularity solutions. Definition of the boundary between
elastic-plastic behavior in which singularity parameters might control crack
extension and plastic behavior where structure deformation defines crack
extension is an important problem in ductile fracture mechanics.

In a first step towards such a distinction, limit load equations reported in
the literature for compact specimens [C(T)] are reviewed, modified as
needed, and then used to predict the measured load versus crack extension
behavior of compact specimens of different size, initial crack length, and
type of steel.

LITERATURE REVIEW

The previous limit load solutions for compact specimens can be classified
into four types in accordance with the assumed slip field or stress
distribution at limit load. These are: (1) circular-linear slip line; (2)
circular slip line; (3) symmetrical slip line; and (4) rectangular yield
stress distribution.

The solutions that are based on a circular-linear slip line originated from
the work by Green (1953), and Green and Hundy (1956) who derived the Timit
moment for a plate with a wedge-like or circular notch subjected to pure
bending. The circular-linear slip line gives a constraint factor of 1.26
when the notch angle approaches zero, a case resembling that of an edge
crack in a plate under pure bending. The 1imit moment was derived from the
equations of equilibrium between the external and internal stress
resultants, giving a lower-bound solution for the 1imit moment.
Subsequently, various investigators applied the circular-linear slip line
solution tc the following combinations of geometry and loading condition:
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three-point-bend specimen under pure bending of the uncracked 1igament
(Landes and Begley, 1972; and Bucci et al., 1972); single-edge-notched and
double-cantilever-bend specimens subjected to tension and bending (Ewing and
Richards, 1974); and compact tension specimen subjected to tension and
bending (Royer et al., 1979; Shiratori and Miyoshi, 1981; and Kumar and
Shih, 1980).

In the second type of solution, Rice (1972) assumed a circular slip line in
an edge-cracked plate subjected to tension and bending. The 1imit load was
obtained by the mechanism method in which the external work done by a
rotation of the plastic hinge was equated to the internal work done by the
shear stresses along the slip line, giving an upper-bound solution. Because
the equations could not be solved in closed form, Rice conservatively
approximated all solutions for combined tension and bending with an
elliptical curve. McMeeking (1984) applied Rice's solution to the compact
tension specimen.

In the third type of solution, Schnitt and Keim (1980) assumed a
symmetrical, circular slip Tine with slope of 45 deg at the crack tip and
-45 deg at the back face and calculated the 1imit load with the finite
element method.

Finally, the fourth type of solution assumed a distribution of the normal
stresses along the uncracked ligament. Two such solutions are commonly
known. In one, Merkle and Corten (1974) calculated the 1imit load based on
the equilibrium between the externial axial force and moment and the assumed
rectangular distribution of yield stress in tension and compression acting
on the uncracked ligament. The value of the limit load was later multiplied
by a constraint factor. In the other, ASTM Specification E813 lists an
approximate value of the 1imit load for compact specimens that was based on
a linear-elastic stress distribution for combined tension and bending, with
a maximum stress of two times the yield stress. The factor of two is about
equal to Green's constraint factor for pure bending, 1.26, times the ratio
of plastic moment to yield moment of a rectangular section, 1.5.

In the present study the effect of an axial force is added to Green's (1953)
solution for pure bending and a numerical, closed-form limit load equation
is fitted to Rice's (1972) solution.

MODIFIED GREEN SOLUTION

Green's solution can be modified to include both the effect of the axial
force, P, and moment, M, acting on the uncracked ligament. Fig. 1(a) shows
the slip line in the upper half of a compact specimen, consisting of a
circular segment of included angle (o+B) and a linear segment that
intersects the back face at a 45-deg angle. The lower slip line, not shown
in the figure, is symmetrical with respect to the x-axis. According to
Green's solution for a wedge-like notch with a wedge angle approaching zero,
the angles o and g of the circular segment must satisfy the condition

tan (o+B) =T_Ti%§%%7 (1)

giving a + B = 117.02 deg.

For any point on the slip line, the shear stress is equal to the yield
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(maximum) shear stress, K. Therefore, according to Mohr's circlea gh%a .
stress normal to the slip line is equal to‘the mean stress, 0?1 = 0. S Sl
o ), LFig. 1(b)]. These stresses must satisfy the property ot the slip

Yy

o, - 2k8 = const. (2)
i i i i i lement on the slip
5 = angle of slip line with x-axis. Rotating an e
Y?ﬁzeclockwige by an angle ¢ gives the stresses on the x- and y-faces of the
element in accordance with Mohr's circle [Fig. 1(c)].

= - i (3)
Oy = %p k sin 26
oy = o + k sin 26 (4)
o =k cos 28 (5)
xy

i ined from the state of stress
The constant and mean stress in Eq. 2 are obtaine 0 r
atepoint C where the slip line intersects the free surface. At th1sbpo;8§e
the angle is assumed to be 6 = -45 deg (Green, 1953). Furthermorg, ZEcat
5 = 0 at the free surface, it follows from Eqs. 3 and 4 that : E ; R
péint ¢ [Fig. 1(d)]. Substituting these values of 6 and Oy in qs.

4 gives the constant

const. = (%-- 1) k (6)

and the mean stress

om=(%-1)k+2k9 (7)

i 5 nd T__ at any
ded to calculate with Eqs. 3 to 5 the stresses o, 0, and
gsﬁnt on the slip line. From the geometry of the sf1p Yine it ¥¥1lows that

g = 45 deg and hence o = 72.02 deg.

iti i ilibrium, =F_ = 0, is
be shown that the condition of ho¢1zonta1 equ!11 s S
égtgg?ieﬁ for the free-body diagram obta1neq by cutting thg comp ct ipsﬁémen
along the upper slip line [Fig. 1(b)lJ. Sjm1lar1y, the equilibrium o
vertical forces at 1imit load, ZFy = 0, gives

+j'a[(-2T[—1)+26)kcose+ksin9]BRde

- P

. g . om=1 _
- [ k sin % + k cos %—] B [b - R(sina+ sinB)] (sinz) = =0 (8)

where b = uncracked ligament, B = specimen thickness, and R = radius of
circular slip line. Solving Eq. 8 leads to
PL = (5.144 R - 2b) k B (9)

Finally, the equilibrium of all moments about the center of rotation, ZMO =
0, gives
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. a 2 _
PL(a +Rsina) - | . kB R°d6 - kB [b - R(sin a + sin B)] V2 R

- kB [b - R(sin o + sing) % = 0 (10)

where a = crack size. Assuming k = o__/V3 in a i

N - . . 5 ccordance with the von Mi
y?e]d criterion and solving Eqs. 9 and®10 for the two unknowns R and P oo
gives the radius of the circular segment of the slip line L

R = /(1.052 a)% +0.409(2ab + b%) - 1.052 a )

and the limit load

WB o (2.572%- na -3 (12)

,_
alns

where W = specimen width.

FITTED RICE SOLUTION

Rice assumed a circular slip line emanatin i

i T S g from the tip of an edge crack

;1ze, a, in a plate.of width, W, subjected to axial force and benging (FigOf
). A v1rtua] rotation of the plastic hinge mechanism gives the following )

upper bound inequality of the external and internal work

W-a i
Mo+ P (52 - Rsing) < kr? (a+B) (13)
where P, and M, = 1imit load and moment actin i
d g at mid-length of th
uncrack%d l1gahent, b; R = radius of slip curve; and « agd B = igcluded

angles. Eq. 13 contains the five unknowns P, , M , R, a
e y s ,» R, a, and . The f
additional equations needed for the calculatkon Bf the Timit 1%ad ar: our

obtained from the requirement that the intern i i
o i T, T al work (right side of Eq. 13)

3 rupl
T [kR® (@+B)] = 0 (14)
B 2
38 LkR® (x+B)] = 0
as well as the geometric relationship
W-a=Rsina + R sin B (15)

and the relationship between the load and moment

W =P = (16)
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According to Rice, Eqs. 14 to 15 lead to the following expression between
the angles

2(a+B) = tan o + tan B (17)

For each set of angles o and B satisfying Eq. 17, the upper bound inequality
(Eq. 13) gives a straight line in a plot of P versus M. A1l such straight
lines envelope the yield surface, which Rice conservatively approximated
with an elliptical curve.

The writers numerically solved the above equations for the values of P, and
M, corresponding to crack sizes varying from a/W = U.5 to 1.0, and fit%ed
the numerical results with the following equation for the 1imit load based
on the von Mises criterion:

2 3
_ a 2 2y _ ) - ay -
P = L0710 - 1.789  + 1.453 () - 0.376 () 1 wWBO (18)
)

This more accurate fit gives a higher limit load than Rice's conservative
elliptical fit, by 4 percent at a/W = 0.5 to 11 percent at a/W = 1.0.

COMPARISON OF PRESENT LIMIT LOAD SOLUTIONS

The two limit load equations developed in the present study were compared in
Figs. 3, 4, and 5. As would be expected, the upper-bound fitted Rice
solution gives a higher 1imit load (Eq. 18) than the lower-bound modified
Green solution (Eq. 12). Because the two bounds differ by at most three
percent, it can be assumed that the 1imit load Eqs. 12 and 18 are accurate
within + 3.0 percent.

In comparison, Green's previous solution for pure bending overestimates and
Rice's previous fit underestimates the limit load of a compact specimen. As
a result, Rice's previous solution actually falls below Green's previous
solution, contrary to what would be expected from the static and kinematic
theorems. The present solutions correctly bracket the 1imit load.

COMPARISON WITH EXPERIMENTAL RESULTS

The two limit load Egs. 12 and 18 were compared with data from
single-specimen, unloading compliance tests of compact specimens to
determine whether the measured load versus crack extension behavior could be
predicted for different initial crack sizes, specimen sizes, and types of
metal. Table 1 lists the measured tensile properties for each material and
the test temperature. The tests were performed using an unloading
compliance method in accordance with ASTM Specification E1152.

The predicted curves were based on the net specimen width, B = B _; the flow
stress, o = 0.5 (o _ + 0 ), where ¢ _ and o are the measured yield and
tensile sgrengths ¥2ted Yn Table l;ygnd thevon Mises yield criterion, k =
o //3. Each data point in Figs. 3, 4, and 5 corresponds to a point on the
m2asured load-displacement curve at which the specimen was partially
unloaded to determine the crack extension from the compliance.
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Initial Crack Size: Fig. 3 shows the data for four 1T-C(T) specimens
fabricated from ASTM A533B quenched and tempered pressure vessel steel that
was alloyed with manganese, molybdenum, and nickel. The specimens were not
side grooved and had initial crack sizes of a,/W = 0.55, 0.63, 0.72, and
0.81. The tests were terminated after about s x-percent crack extension, Aa
= 0.U06 a;, The test temperature was 150°C. In each test the load rose to
the maximum measured value, the crack extended, and the measured curves
gradually aligned themselves with the two predicted limit load curves.

Specimen Size: Fig. 4 shows the data for two compact specimens, one of 1/2T
(12.5 mm) and the other of 1T (25 m) size. Both were side grooved 20

percent, giving a net thickness of B_ = 10 and 20 mm, respectively, in the
plane of the crack. The specimens wlre fabricated from a quenched and
tempered 3% Ni alloy steel. The tests were started at an initial crack size
of aj/W = 0.60 and terminated after the crack had extended up to pa = 0.46 aj-.
The specimens were tested at room temperature. The results were plotted in
terms of the 1imit load normalized by the flow stress, net thickness, and
specimen size. Both measured curves agreed very well with the predicted
1imit loads over the full range of crack extension.

Type of Metal: In the third comparison, Fig. 5 shows the data for four
IT-C(T) specimens fabricated from A5338 steel; 3% Ni steel; ASTM A710, a
Tow-carbon, age-hardening, nickel-copper-chromium-molybdenum-columbium alloy
steel; and CS-19 aluminum, a aluminum-magnesium alloy with high yield and
tensile strengths. The A533B steel specimen was tested at 150° C, the other
three at room temperature. The specimens were 20-percent side grooved and
had initial crack sizes varying from 0.61 to 0.75 a/W. The tests were
carried out to crack extensions greatly exceeding the ten percent of a/W
permitted in the ASTM E1152 J-R curve test method. As with the previous
data, the measured curves for 3% Ni steel and CS-19 aluminum agreed very
well with the predicted 1imit loads, whereas those for A533B steel and A710
steel were well above the predicted 1imit loads.

The relative positions of these four materials in Fig. 5 correspond directly
to the relative toughness as defined by the measured value of J (ASTM
E813) listed for each material in Table 1. The high-toughness Agloy
specimens showed significantly more specimen deformation, allowing strain
hardening to increase the observed limit load. Also apparent on the A710
steel specimens was a lateral expansion of the specimen and closing of the
side groves at the back face which could have contributed to the observed
elevation in 1imit load as the test progressed.

CONCLUSIONS

In the present 1imit load analysis of the compact specimen, Green's (1953)
Tower-bound solution for pure bending was modified to account for the
additional effect of axial force. For the case of a sharp crack geometry, a
closed-form solution was obtained for the 1imit load and the radius of
rotation of the deforming compact geometry. The previous approximate
upper-bound solution of Rice (1972) was evaluated by fitting a polynomial
function to the transcendental equation, giving a more accurate solution
especially for ratios of axial force and bending typical of the compact
specimen. The upper- and lower-bound results are consistent with each other
within 3 percent, from a/W = 0.5 to 1.0.
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rengths, the calculated 1imit loads
tally measured load versus crack
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Assuming the von Mises yield cri
the mean of the yield and tensile st

d well with the experimen )
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ite the wide range of initial crack size, 3, = 0. 0.81; b n
??ig(T)- and fracture toughness, J,_ = 25 kdJ/m" for the aluminum and J, .

183 to 435 kd/me for the steel spedfmens.

ity controlled crack extension could not

be determined. Using the improved understaqding of ;he §olgtion for the
slip line field, the writers are seeking suitable cryter}a 1gr srameter
distinguishing the crack extension coqtfol]ed by a singularity p

from that defined by deformation at limit load.

The presence or absence of singular
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Table 1 Properties of Materials
Material Yield Ultimate Flow Total Fracture Test
Strength  Strength  Stress Elongation Toughness Temperature

Oys Ou % $ e T

(MPa) (MPa) (Mpa) (%) (kd/m?) (°c)
A710 517 605 561 31 435 RT
A533B 443 621 534 19 240 150
3% Ni steel 614 731 672 23 183 RT
CS-19 251 408 329 24 25 RT
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