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ABSTRACT

In this paper, it is shown that the singular factor 1/\/; appearing in static fracture problems is correct only under
the assumption that couple stresses are neglected. Furthermore, using some fundamental results from the theory
of partial differential equations it is argued that for dynamic fracturc problems the stresses can not be singular.
This would imply that traditional dynamic fracture analyses are in error.

Problems in the Theory of Static Fracture - Classical Solutions and Order 2 Hyperelasticity

It is well-known that the governing equations for the canonical fracture problems are elliptic in nature in case
the Airy stress function ¢ defining type I and II fracture problems may be decomposed as equation (1) (see e.g.
[1,2]. Thus, plane problems (Modes I and II) are governed by the biharmonic equation, anti-plane problems
(Mode III) are governed by Laplace’s equation, and the fundamental three-dimensional problem (penny-shaped
crack) is governed by harmonic equations through Papkovitch-Neuber potentials. It is known further that a
biharmonic function, ¢, can be expressed as the sum of two harmonic functions ¢, and ¢, as follows [2]:

O, y) = x0,(x, ) + §p(x, y)
(¢))
0@, 8) = (F-D,(r, 6) + 0,(r, 0)

Thus, in essence the governing equations are all partial differential equations of the elliptic type.

It is known that solutions of elliptic equations are global solutions. Since there is only one constraint condition
(boundary condition known as the Dirichlet or Neumann problem) for each elliptic equation, it is only possible
to impose a condition of analyticity on either an inner or outer boundary with possible singularities appearing at
the opposite boundary. For example, in the case of Laplace’s equation on a circular region the solution may be
written as

u(r, 6) = i " (A,cos nf + B,sinnf) ;r<a

(@)
w(r, 0) = g, 1™ (Apcos nO + B, sin nb) ; r>a
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Note that if the solution is required to be bounded at lllhlllly, it will be smgulal at the origin, and vice versa. It
is therefore possible to infer the singular nature of the solutions in fracture problems, since in these cases one
gin,

requires bounded stresses at infinity but still includes the origin (where a singularity will exist) in the bod
e y.

'lI}"hese observations qn-ly hold in the case of classical elastici
cory of hypell'-elasucny, couple stresses are included so as to annihil

To ﬂl}xstrate this, consider the hyper-elastxity

equations for this problem are as follows:

V4 ¢(x, y) =0

2Y* .V2 -
Ox,y) - V2y(x,y) =0 @

in which 2 = 2(1 + v)n /E, where M i
; 3 M is the flexure modulus. The functi i
analogous to the Airy stress function from which the stresses may be dc;:si;zzsa?fﬁix' A stress potentials

O =0uyy - Wiy ®
Oy=0. +V,, ©
Ty =0y -V -
T= By Ve ©

K=y, ©
Hy =¥y (10)

It is seen that the shear stresses are not symmetric due to the presence of the cou

in Fig. 1 below. ple stresses |1 and L, defined

Fig. 1 Basic Couple Stresses

More im i i i
e factpsyr;a;ggﬁfgr lh; prese_m discussion, the governing equations are no longer purely elliptic. Equation (4)
e et B , and as will bc shownAshonly, this does not allow singular behavior in the solution. Th
euiplicgnamr:a;}::i of the sqesses in classical elasticity fracture problems can be viewed as dcpending. O :-;]S,
e governing equations and the imposition of analyti i i i aple
o ] i ytic behavior at infinity. Includi
ses changes the nature of the governing equations, and thereby removes the singularil)y at I.hce l::(xi:::i ‘l:i(j))upll?
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ty in which there are no couple stresses. In the

ate the singular character at the crack ti
tup.
plane problem of order 2. It can be shown [3] that the govemirg;

3)

we try to apply this couple stress theory defined by equations (3)-(10) to static fracture problems of type 1 and
11, we are forced to abandon the boundary condition of giving stress exerted at infinity, since the governing
equation (4) permits only local solution, as the case of the next section. The couple stresses theory is better than
the classic one. Of course, it can be applied to solve static fracture problems.

Classical Elasticity and Fracture Dynamics

1t is well known that the governing equations for elastodynamics are as follows:
2 2
CLV2¢=¢,U o C’rvz\v=‘¥m an

in which ¢, and cp represent the wave speeds for pressure and shear waves, respectively. Since these equations
are hyperbolic, each equation will have two constraint conditions, in contrast to the elliptic problem in which
there is only a single constraint. In effect, for hyperbolic equations one must specify both boundary data and
initial conditions.

The existence and uniqueness of solutions to hyperbolic equations is proved by the Cauchy-Kowalewsky
theorem [4], which demonstrates that the solution can be expanded into a convergent power series in the
neighborhood of a given point. This provides a local solution, as the series is convergent only in a small part of
the domain. There can be no singular terms existing in the expression of the solution. Nevertheless it is
common in dynamic fracture problems to consider stresses applied at infinity in analogy with static problems.
If one requires bounded stresses at infinity, then the solution can exist only in the neighborhood of infinity: it is
therefore meaningless to consider the effect of dynamically applied stresses at infinity on material near the
origin. Another way to think of this is to note that for finite propagation speeds, it will take infinite time for a
disturbance from infinity to reach the origin. Thus one should always work with stresses applied in the vicinity
(generally on) of the crack itself.

A further consequence of the Cauchy-Kowalewsky theorem is that for problems considering stresses applied on
the crack faces, there can be no singularities in the solution. An example of such a non-singular solution can be
found in [5). This is of course counter to the prevalent approach, which is based on the initial assumption of
singular stresses at the crack tip. Based on the theory of partial differential equations, however, the traditional
approach appears to be incorrect.

Discussions
It is mentioned in Section 3.5 of (5] that the method of coordinate stretching or shrinking had been successft ully
applicd 1o get the asymptotic solutions of some nonlinear hyperbolic partial differential equations but failed to

that of elliptic equations. Furthermore, in this reference, the governing equation of a hydrodynamic problem
which is the equation (2.3.16) in [5] has been defined to be an elliptic equation:
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(2.3.16) [5]

239X 9x2 ady ox*

Another is the following one which is the equation (2.3.37) of [5] defined to be a hyperbolic equation:
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- 2n2 (cole - §Rh3) (g; + 2Tcsc9hzg—:— g—xg 1+0(02)=0

The equation (4) of this paper is just like the type of the above equation (2.3.37) [5], thus, Eq. (4) is an hyper-
bolic equation in nature.

In shell theory [6], a shell of revolution with its genertrix r = 7»2”, here A and M are parameters, z is the axis of
revolving. In momentless theory, the governing equation is:

2 -1) 92
a_g+%5°;g.&gz_>a_ﬁg=o @2.3) (6]

Z
The shell is defined in the closed interval 0< z < { (a certain positive constant). Thus, if 0 < L < 1 the equation
(2.3) [6] is of elliptic type which is defined by positive Gaussian curvature. In that case, this equation has an
unique solution under given load and proper boundary condition. If lL < 0 or K > 1, the above equation is of
hyperbolic type which is defined by negative Gaussian Curvature, in this case, the stresses of the shell may
adopt indefinite value under no external load.

All the above statements illustrate that there exists radical distinction between different type of partial differen-
tial equations, we must consider seriously in all branches of mechanics this distinction otherwise entirely
different results would be caused, i.e., the incorrect results.
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