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ABSTRACT

A solution to the quasi statically propagating mode III crack in an elastic perfectly plastic solid is
obtained as the limit solution for vanishingly small linear strain hardening. A point above or
below the crack plane will experience, first a centered fan slip line field followed at the angle
+32.8°ahead of the crack tip by elastic unloading and finally, from the angle +179.7°to the crack
surfaces, plastic reloading occurs at a constant stress. The limit solution performs a discontinuity
i the radial stress rate across the elastic plastic boundary at +32.8°,
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INTRODUCTION

I'he region of dominance for single term asymptotic fields often is often extremely small, and
one observes, when numerical solutions are studied, that the effects of hardening generally is
confined to a small region surrounding the crack tip. Outside this region the solution is
clicctively one of perfect plasticity. Thus solutions for perfectly plastic materials becomes very
important and the question of uniqueness arise. One may for instance ask whether a solution
depends on the definition of perfect plasticity, e.g. one such definition may be the limit of a
vanishing strain hardening. An asymptotic solution for perfect plasticity has been obtained by
Chitaley and McClintock (1971). This solution involves three regions of different material
behaviour. A particle slightly above or below the crack plane experiences, as the crack tip pass,
firsta plastic centered fan slip line field, followed by a linear elastic unloading field and finally a
plastic constant stress field near the crack surfaces. The displacement rate was shown to be
proportional to In(r) where r is the distance from the crack tip.

lor linearly hardening solids Amazigo and Hutchinson (1977) studied asymptotic solutions
using a von Mises yield condition and its associated flow rule. They showed that the
displacement rate in the asymptotic field should be proportional to rs. The solution was, for the
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angular distribution of stresses and strains, obtained after neglecting the possibility of plastic
flow on the crack flanks, as howeverhad been observed for perfectly plastic solids. A corrective
solution was recently given by Ponte Castaneda (1987) who included the possibility of reloading
on the crack flanks. Such plastic reloading was found to occur, except for, unreasonably high
hardening rates. The plastic reloading sector was however found to be very small, i.e. less than
about 0.3° and the inclusion of this sector did not in general change the old results. In the study
by Ponte Castaneda (1987) the numerical solutions goes to a few very small values of the
hardening parameter in order to try to make a connection with the perfectly plastic problem.
Whether the limiting solutions for the hardening materials can in fact be related to the perfectly
plastic materials solutions have been discussed by many authors. Due to a hypothetical
assumption as regards the angular distribution of stresses for the infinitesimally linear hardening
material Dunayevski and Achenbach (1982), comes to the conclusion that the radial dependence
in the limit is r='=. A related discussion is of course also one of uniqueness for the established
perfectly plastic materials solution. The present paper is a contribution to that discussion. It
concerns the asymptotic stress and velocity fields for a mode I1I crack steadily quasi statically
propagating in an elastic plastic linearly hardening material. Plasticity that follows the von Mises
yield condition and the associated flow rule is considered. Further we have restricted ourselves
to small strains and deformations. The solution in the perfectly plastic limit for a linearly
hardening material is studied and found to be different from the solution for the perfectly plastic
materials. It is thus argued that the asymptotic solution for elastic perfectly plastic materials is not
unique. As a matter of more practical significance, the difficulties as regard the identification of
the asymptotic solution at numerical investigations of elastic perfectly plastic boundary value
problems is recognized.

ANALYSIS

The study considers a large body, cut by a plane crack. Only a small region surrounding the
right crack tip is analysed. A moving cartesian coordinate system is introduced such that the
crack occupies the region x<0, y=0 (see Fig.1). An elastic linearly hardening material, obeying
von Mises yield criterion and its associated flow rule is assumed. The deformation is assumed to
be anti-plane and to be anti-symmetric with respect to the plane y=0. Thus it is sufficient to
consider only the upper half of the body (y=0). The crack tip moves with the velocity V with
respect to a stationary coordinate system. Within the frames of quasi static and steady crack
growth V is constant and the material derivative is given by

()y=-Vo()/ox , 1)

where the dot denotes differentiation with respect to time. Now a polar coordinate systemT, ois
attached to the crack tip such that the crack is situated at e=+m. (see Fig.1) The incremental
components of stress and strain for the linearly hardening material at plasticity are related
through

Gy, = o1, + (-t @)
G, = 0T, + (1-WTeTT 3)
where ‘t=(tn2+‘[622)1[2 is the effective stress (see Fig.2). The parameter o denotes the ratio G,/G

where G and G, is the tangent modulus at elastic and plastic deformations respectively. The
stress rate components are assumed to be in equilibrium, i.e.
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Fig. 1 The crack tip geometry. Fig. 2 The stress and strain curve.
91,,/0x +01,,/dy =0 . 4)

Inertia and body forces are assumed to be negligible. Now a stress rate function ®(x,y) is
introduced, which will readily maintain equilibrium stress rates

T, = 0Dy )

1, =—0D/dx . (6)
‘I'he compatibility equation for the polar components of strain rates reads
3Y,,/00 — (rYe,)/Or =0 . @)

After elimination of strain rates one obtains the following equation for the stress rates in the
plastic regions:

orAd + (1-)[3(1,,TT)/28 — (T, TT /Al =0 . ®)
and in the unloading region
) AD=0 . (&)

I:quation (8) is of degree one in the stress rate which invites us to look for solutions proportional
to r*. Further a plastic centered fan field develops ahead of a crack tip in a perfectly plastic
material (Chitaley and McClintock, 1971), suggesting the following substitution

® = K1, Vr'[f(0) + cosb] . (10)

K is an amplitude factor and the yield stress 7, is introduced for convenience when the function
{(1) and the parameter s is determined. Now the polar stress rates may be written

1, =Kt Vi (7 = sin®) | (11)
T, = KT, Vst ' (f + cosB) . (12)
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Integration of Tyz using (1) and (6) gives
Ty, = Kt (f + cosf) . (13)

It is easily shown, by insertion int> the equation of equilibrium that the function of y appearing
after integration must be a constan! which can be neglected without loss of generality.

Now the following notation is intreduced
1, =K1 r°F@) , (14)

where F is an unknown function of 6. After using the relation (1) the following relation between
F and f is obtained

F’sin€cos6 + F(sinze—s cosze) =f'cosO + fsin® . (15)

The polar stress component t,, is given by
Tg, = —T,,0n0 + 'cyzcos'1 0 = Kt r'(1 - Ftan® + fcos'0) . (16)

Further the effective stress rate is given by
T= (T + ToTo )T - an
The boundary condition due to theanti symmetry of displacements across 6=0 implies symmetry

for @ and thus
f(0)=0 . (18)

At the traction free crack surfaces \/2:0 and thus
f(m)=0 . (19)

The asymptotic field has at numercal analyses (Ponte Castaneda, 1987) been found to consist of
a primary plastic zone, followed atan angle e _ by elastically unloading and finally at an angle e  a
second plastic zone appears during reloading adjacent to the crack surface. Let [ ] denote a jump
in a quantity across a discontinuity line. According to the work of Drugan and Rice (1984) the
following continuity conditions have to be fulfilled

Y] =0 . (20
[t.]=lt,]=0 . (1)
Continuous plastic strains then implies that

[wl=0 . (22)

At 6= 6, it is necessary that
1=0 (23)

and hence according to (22)
(1, ©)]1=0 . (24)
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Further the equations (12) and (13) implies that
[Te,] =0 . (25)

A particle passing the crack tip retains the plastic strain state it had when it entered the elastic
unloading sector. Thus plastic reloading occurs at 6 if the effective stress of the particle regains
its value at unloading value, i.e.

Bp)/sin’0, = 1(8,)/sin’0; . (26)

Equations (8) to (9) together with the boundary conditions (18) to (19), the continuity conditions
(24) and (25) and the condition (26) constitutes a one dimensional boundary value problem for a
general value of o. Somewhat differently formulated, this problem was earlier treated
numerically by Ponte Castaneda (1987).

THE SMALL o LIMIT

We assume for a moment that
s=0(a'?) as -0 @7
A solution which is singular at the crack tip is looked for and thus we assume that s<0. An

cxamination reveals that equation (8) is regular at 6=0 and F=0. For sufficiently small values of
I and e, one obtains by insertion the following relation

of cos'@—Fs—o+s>=0 (28)

Since according to (15) F'f20, F has to fall off immediately towards s-a/s when 6 is O(s). The
conclusion is that

F'=0@?), F=0w" and F=0@'"? 29)
i the limit as o =0 and for sufficiently small but finite values of 6. Equation (8) reduces to
F'(2Fsin6 + s cosB) — 2sF sinB + (F2 + 0= sz)cosB =0 (30)

One readily observes that (as long as F stays regular) F is monotonically increasing for 0<6<n/2 if
s“<a. One equally observes that F is monotonically decreasing for 0<6<n/2 if s2>a.

Considering (29) one obtains
T= —K‘toVrs“](F sin® + s cosB) 31)

By inspection of this condition one comes to the conclusion that if s2 is larger than O(o) then
unloading cannot occur for 6<n/2. On the other hand if s?=o(a) unloading has to occur imme-
diately at 8=0. Since non of these cases are acceptable the assumption (28) is justified. The cases
where s2>a, has to be rejected since the condition (23) cannot be fulfilled for e<n/2. For s2<a
one finds that F/s—- as F—-(s/2)cote the following notation is convenient

F — F, =—(s/2)cotf, as -0, (32)

1115 concluded that unloading cannot occur for 0<6<8, if s20, as long as condition (29) is valid.
One may write for 66, 6<6
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F (F-F,) + (1/2)(ct + F3)cotd, =0 (33)

The solution is
F=F, - [(a.+ F2) cotd, (8, — )1 (34)

This solution is valid under the condition 90-9>O(a1/3). When eo-e=0(u1/3) the following
relations will according to (34) replace 29

F=0(), F=0(?3) and F=0(c2?) (35)
and thus (30) does no longer represent (8) as a—0. Equation (8) is now reduced to the following
(a+ FA)(F” - cotd,) — 2F (F — F) =0 (36)

After integration one obtains
(a+FA)[F — (8, — 6) cotd,] — (F = F,)’=0 (37

Note that the integration constant may be dropped without any loss of generality. The boundary
condition is found from (34)

F=F,—[(F}+0)cod, B, —O)'"  as (0,00 > - (38)
It is readily seen that F” is greater than or equal to zero and monotonically increasing. In the limit
for large values of F one obtains from (38) that

(+FF —(F-FY >0 as F—oee (39)

After integration this reads
F s F,+ (0t + F2)(8; - 0)” as 60, (40)
where 9, is a constant such that el-eo=0(a1f2). This solution holds as long as el-e=o(a1/2). When
91—e=0(a”2) then
=0, F=01) and F-F,= o™ (41)
Now (8), when second order terms are neglected, reads

F (0. + FA) + F' QFF - 2F — s cotf,) = 0 (42)

. -172
This equation may be integrated and consideration of the boundary condition for (6,0 -
permits determination of the constint appearing after integration and thus the following equation
results

F (a+F)- (F-FY’ =0 (43)
In the elastic unloading region the solution for f can be written
f=A sin(s6 + 8) — cosb (44)

where A and & are arbitrary conslants. The boundary condition of traction free crack surfaces
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implies that
8=586, 45)

The continuity conditions (24) and (25) allows elimination of A. Thus it is necessary that
F/(8,) = 1+ cotd/(8, — 6, (46)

Now the only remaining condition at 6, is (23) to ensure unloading. After consideration of (41)
one obtains

Ff — Fsinep —-s (:os@p =0 47)
which after simplification and insertion of (46) gives
0, =0, + [tand, — (s7/4a) cotB ] . (48)

In the remaining calculations only (30) and (48) has to be solved under the condition of (26)
which in the limit of vanishing hardening rates reads

w0,) =16, - (49)

RESULT

For a suggested value of o inserted into (30) the angle 6_ was calculated. The angle 8,at which
1, equals zero is found through (48). Then the condition (49) is checked and as long as this
condition is not fulfilled within acceptable limits the procedure is repeated with a new value of a.

The result was found to be

s = —0.812228 o' (50)
0,= 32.845° (51)

and
8, =179.7191° (52)

The result can be compared with the result of Ponte Castaneda (1987) who numerically
attempted to approach the perfectly plastic limit. The lowest value chosen for « in his analysis
wis 106, The reported results where s=-0.81a'"2, 6 =33.88° and 6,=179.731° which in the light of
the present paper seems to be rather accurate. When comparing with the Chitaley and
McClintock (1971) result for a perfectly plastic material, the differences are substantial, e.g. the
results are 9p=19.71° and 6,=179.634° . Examination of the solution presented in this paper
reveals that the plastic field ahead of the crack tip in the limit is a centered fan field. The
deviations are here proportional to o2 . Due to the different unloading angle, the deviations from
the Chitaley and McClintock (1971) solution are finite in the trailing elastic unloading region.
‘I'he solution in the plastic re-loading region near the crack surface approach in the limit a
constant stress field. Figure 3 shows a somewhat surprising difference, namely that the limit
solution allows for a discontinuity for the radial stress rate in spite of the condition of continuous
stress rates for both hardening materials (see eqn. (24)) and for perfectly plastic materials when
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Fig. 3 Stress rate distribution T, and 1, for vanishingly small linear strain hardening.
The dashed lines show the result obtained by Chitaley and McClintock.

perfect plasticity is assumed a priori(cf. Chitaley and McClintock, 1971).

It is believed that the appearance of iwo alternative solutions for the perfectly plastic material is
an artifact of the condition of unlouding at the boundary between the leading plastic and the
unloading region. This condition is approached at any angle, as the perfectly plastic limit for a
linearly hardening material is appreached, but as long as hardening is present it is completely
fulfilled only at one specific angle. It is an open question whether other solutions will be found
for perfect plasticity approached frem other hardening assumptions. Further it seems probable
that solutions provided from numerical methods such as the finite element method cannot be
expected give reliable estimations of for instance 6, due to the extreme sensitivity to only slight
hardening effects.

ACKNOWLEDGEMENT

This work was financially supported by a grant from the Swedish Board for Technical Develop-
ment. Mr P. Delfin is gratefully acknowledged for help with the numerical calculations and also
for stimulating discussions.

REFERENCES

Amazigo, J. C. and Hutchinson, J. W. (1977). J. Mech. Phys. Solids, 25, 81-97.
Chitaley, A. D. and McClintock, F. A. (1971). J. Mech. Phys. Solids, 19, 147-163.
Dunayevski, V. and Achenbach, J.D. (1982). 1. appl. Mech., 49, 646-649.

Drugan, R.H. and Rice, J.R. (1984). Mech. Mat. Behaviour, Edt G.J. Dvorac and R.T.
Shields, Elsevier Science Publ., Amsterdam, 59-73.

Ponte Castaneda, P. (1987). J. Mech. Phys. Solids, 35, 227-268.

462


User
Rettangolo




