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ABSTRACT

A fracture mechanics approach using the vectorial J-integral
has been discussed in detail, particularly in connection with
complicated singular problems in adhesive bonds. Some numerical
results presented agree well with existing methods when these
are available. A procedure parallel to conventional LEFM has
been established to apply the present approach to engineering
applications.
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INTRODUCTION

In elastic-plastic fracture mechanics(EPFM), the stress distri-
bution around a crack tip is then given by the HRR solution(Rice
and Rosengren,1968; Hutchinson 1968):

n
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I, is a function of n, n is the strain hardening
exponent, Jois a constant,

g(®) are functions of direction only, and

J is a path independent integral.

where

The equation demonstrates a singularity in r which is often
ecnlled the HRR singularity such that J is the strength of this
singularity. The J-integral can also be viewed as the energy
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available to make the crack propagate. Accordingly, the failure
criterion becomes

Jzde (2)

where the critical value ) is a material property and is called
the fracture toughness.

Eshelby(1956) discussed general defects in an elastic continuum,
including dislocations and inhomogeneities. The energy momentum
tensor of an elastic field is derived as

J J ( %3 ) as (3)
i = Wny - ds
s nk Jk aXi
where u is the displacement vector
n is the direciional cosine of the outward normal

of the boundary surface S, and
W is the energy density.

The J vector gives the force on all sources of singularities
and inhomogeneities within the enclosed surface S arising

from an external stress system. In particular,the J vector is
not necessarily only associated with cracks but it is the mea-
sure of all sources of any kind of singularity which may be
caused by anydiscontinuity enclosed by the surface S. Rice's
J-integral is a special case in 2-dimension with the crack tip
as the only singular source such that J2 and J3 vanish and sur-

face integration degenerates into a line integration.

In adhesive bonds, there is always a discontinuity in material

properties regardless of whether there is a crack or not. Here-
after, the 'singularity' will be used to mean any discontinuity
which cannot be accounted for by continuum mechanics and the J

vector will be used to investigate this singularity.

The failure criterion for a homogeneous material using the J
vector method can be expressed as

la]= dc (4)

where |J| denotes the modulus (magnitude) of the J vector.

NUMERICAL PROGRAM AND ANALYSIS

A 2-dimensional finite element program FELDEP is available for
the stress analysis of adhesively-bonded joints. A FORTRAN
program JINTEG has been developed for use in association with
FELDEP to calculate the J vector. In order to check the cor-
rectness of the program,a systemmatical analysis on a standard
fracture specimen was performed.

The fracture testpiece is a single edge notched three point
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bending fracture toughness *est specimen (SENB). The systemmat-
ical analyses include four cases using small displacement elas-
ticity theory (se for short), large displacement elasticity th-
eory (le for short), small displacement plasticity theory (sp
fgr 2?ort), and large displacement plasticity theory (1p for
short) .

The specimen was made from a rubber modified epoxy adhesive
(designated as CTBN here) for which E = 2500 MPa and »= 0.37.
The stress-strain curve used for the plastic analysis is obta-
ined experimentally. In the finite element model, only half of
the SENB specimen has been modelled and the x—-axis was taken
within the symmetry plane. The specimen was loaded under plane
gstrain condition to the fracture load determined expermentally
which corresponds to a load of 36 N per mm thickness. This load
gives K=2.215 MN/m>?# according to well-known expression(ASTM).
This is equivalent to J = 1.672 (kd/m2 ).

As all the paths specified were half of the closed paths, all
the numerical values of Jy from JINTEG should be multiplied by

o factor of two. 10 paths were used to calculate and average
Ji for all 4 cases. The output from JINTEG is in Table 1.

Table 1. Numerical J Values for SENB Specimen
J1 J2
length Sse le Sp Ip se le Sp Ip

3,027 0.836 0.820 0.842 0.827 0.025 0.039 0.025 0.0

2.049 0.8%3 0.815 0.839 0.822 0.019 0.036 0.013 0.0%g
8.30% 0.833 0.823% 0.840 0.830 0.037 0.047 0.037 0.047
4.63%8 0.823% 0.811 0.830 0.818 0.030 0.041 0.029 0.041
, 16.852 0.83%1 0.824 0.837 0.83%0 0.049 0.058 0.049 0.059
6 11.590 0.828 0.820 0.83%5 0.827 0.042 0.051 0.042 0.052
! 31.496 0.830 0.827 0.837 0.83%4 0.062 0.071 0.063 0.073
4 22.186 0.828 0.823 0.835 0.829 0.055 0.064 0.055 0.065
9 33%.971 0.831 0.829 0.838 0.842 0.057 0.065 0.058 0.066
10 33.196 0.830 0.827 0.83%6 0.840 0.066 0.076 0.067 0.075
Average 0.830 0.822 0.837 0.830 0.044 0.055 0.044 0.055

B R —

~

Units: mm for length and KJ/m? for J-integral

It can be noticed: a) With path lengths ranging from 2.05 ™m

to 33.97 mm, path independence was proved for all 4 analyseés

ne the maximum deviation was only about 1.0%. b) For the speci-
men and material concerned, the non-linear analyses made little
d{fference. The SP analysis results gave a minor improvement of
1% over the SE analysis, judging from the average of 10 paths
¢) Comparing the numerical results with ASTM expression as :
ziven in Table 2 shows good agreement. The difference between
Q?TM geg;lt and the averaged J vector for the case sp is less

wan 0.5%.

All t@e above points show that the program is reliable and the
numerical results are accurate.

551



ot

Table 2. Comparison of J and @

cases J4 J2 1Jl angle @
KJ/m? KJ/m? KJ/m2 degree

s.e. 1.6606 0.0882 1.6630 3.04
l.e. 1.644 0.1098 1.6474 3.82
s.p. 1.674 0.0889 1.676 3.04
l.p. 1.660 0.1103 1.6636 3.80
ASTM 1.672 0.0 1.672 0.0

The direction of the J vector can be determined. The angle 4
predicts the direction of crack propagation. Within a maximum
deviation of 4° as shown in Table 2, it agreed fairly well with
the theoretical O degree. This demonstrates that the J vector
criterion itself can be considered as a mixed-mode failure cri-
terion. Most adhesive bcnding problems inherently involve mixed-
mode fracture and most of them are not separable into different
modes in order to apply other mixed-mode fracture criteria.

BONDED SYSTEM

Considering a bi-material system without cracks, the energy con-
servation law can be applied to individual homogeneous materials
and this gives

buj au 1
JS (Wni ‘— nkdj]r_—DXi) das +J’So((w]t.ni —[ijnk—ai:%r_)ds=o(5)

+

where [ J_denotes the jump of a function across the bonding
interface sp. Without any other singularity in the system, equ-
ation (5) reveals that

u s
Ji = —ISO ([Wj:-ni - [Ojknk %—%]t)ds (6)

If the two materials have the same properties, the jump across
the interface will be zero so that the Ji = 0. For different
materials bonded together, the J vector is not zero. This can
only be expected because the interface is a kind of singular
source. This singularity will be discussed in detail in terms
of the numerical Jj results.

A specimen modelled as half CTBN =nd half steel bonded together
was loaded by applying a uniformly distributed tension (T) along
the CTBN boundary as shown in Fig.1. The left hand boundary of
the steel was restrained in the x-direction. The CTBN had the
same propertied as before, and the steel properties were: E =
210 GPa; y=0.33 .

Elastic Analyses

Linear elastic analyses were carried out for the bonded speci-
men . The stress distribution diagrams shown in Fig.2 are for
an applied stress, T, of 15 MPa. The obvious singularity at
point A is clrarly seen. The singlar nature of the bond line
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will become clear when the Jj

numerical results are examined. yq

60
The values of J in Table 3 are
for an applied stress, T, of 30
MPa. As the bond line was paral- 1| steet ohesive  —IT
lel to the y-axis, the path in- H creny
dependence of Jz indicated that I
all the singularity in the y- material T | material T [ ]
direction was at the point A. H —
It can also be seen that the -
values of 4 vary with the path ¥ |
length. A close look at Table 3 H
will reveal that although the
paths 7, 9, and 10 had different > - - p—

lengths, while enclosing the
same bond line, the values of J;
for these three paths were prac-
tically the same. This means
that Jy is also path independent
aus long as the same bond line is
enclosed by the different paths, J; is dependent on bond 1line
length only.

FIG.1 SIMPLE TWO-MATERIAL
BOND
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(a) o, in steel (b) 0, in CTBN

Fig.2 Elastic stress distribution in the
simple bond

Another point is the direction of the J vector. J; was extrapo-
inted against interface length to get J; for the point A. The
direction of the J vector is given by 9=tan—1(Jp/J4¢) which is
176.5° for point A. If the steel had the same fracture tough-
ness as CTBN, the predicted crack would initiate and propagate
in the steel (§>90°). This is consistent with the common know-
icdge that the failure would be in the stiffer material if the
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Table 3. Numerical J values for Bonded System

NO. path length bond line Jy Jdo

mm mm KJ/m? KJ/m?
1 4.848 0.965 -1.070 0.400
2 3.270 0.653 -0.924 0.397
3 11.949 2.848 -1.609 0.401
4 7.110 1.553 -1.265 0.394
5 23.16 5.781 -2.126 0.401
6 16.263 3.981 -1.827 0.398
T 42.316 10.765 -2.750 0.401
8 30.137 7.598 -2.372 0.3%98
9 48.492 10.765 -2.760 0.409
10 45.411 10.765 -2.762 0.410

two blocks had the same toughness.

In practice, the fracture toughness of the materials will not
be the same, so the failure will not propagate in the same
direction as the J vector since it depends also on the fracture
resistance of the materials. Then we can define the fracture
toughness as a function of direction and position for a complex
material system, such that

Jc = 'Jc (97 va,Z) (7)

In the bi-material system considered here, for instance at
point A, it is simplified to
J _{Jc of C(TBN if 0° <« © < 90°
J. of steel if 90° < 6 <180°
At ©=90°, the fracture toughness depends on many factors such
as the physical end chemical characteristics of the bonding

interface, surface preparation, and defects in the bonding. For
a perfect bond, it can be assumed that Jo = Jo of CTBN.

To be able to use the d vector as a fracture criterion, we must
convert the J vector into a direction related scalar. This can
be done by projectingd onto a straight line in the direction
of 6 (whose direction cosine is denoted as ni), such that

J(g) = Jini (8)

J(6) can then be considered as the singularity driving force in
the direction 6. In the present two—dimendional case, equation
(8) becomes

J(e) = Jy cos 8 + Jp sin @ (9)

It is worth mentioning that Kishimoto (1980)has obtained the
sameform of equation based entirely on different arguments.

The fracture criterion is now generalized as
I(g) Z Ic (9) (10)

and the failure will ¢ccur in the direction in which condition
(10) is first reachei. It must be emphasized that both J and
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J. are local parameters, in other words they are functions of
position for nonhomogeneous materials. When there are different
singular sources operating together, such as crack, voids and
the bonding interface, the theory takes the same form to ac-
count for them all. This advantage makes the present approach
superior to some other approaches for a complicated system, for
example, to predict the failure of a composite material. In
macromechanics, a composite is considered as homogeneous but
highly anisotropic. The macro fracture toughness Jo is not a
function of position but is a function of direction. Most com-
posites fail in an interlaminar fashion since this is the di-
rection in which Jo is the jeast. On a micro scale, a composite
has many kinds of singularities, such as microcracks, voids,
interfaces, debonding and so on. Conventional fracture mecha-
nics is no longer sufficient to deal with all of these .However,
there is no difficulty in applying the present method.

In TEFM, the relationship of J and the applied stress T can be
expressed as

JocT or J = T2 Y/E' (11)

where E' = E for plane stress, or E/‘I—V2 for plane strain,
and Y is a function to account for the nature of the singula-
rity and the geometric configuration.

In the LEFM regime, Y is a constant for a particular geometry
and material combination, so it can be derived by carrying out
a numerical J integral for an arbitrary applied load. For
example, for the bi-material bond here, Yi and Yp were derived
from an applied load of 30 MN/m2 .

Once the value of Y is known for a given system, J is directly
related to the applied stress by equation (11), so it is easy
to estimate J for different applied loads. A comparison of
values of J between those estimated using equation (11) and
those thained from the actual numerical integration is in
Table 4.

Table 4. Numerical and predicted J

Load J Numerical J1(eq.11) JoNumerical Jz(eq.11)
MN/m2 KJ/m? KdJ/m2 KJ/m? KJ/m?

15 -0.267609 -0.2676 0.100 0.100

30 -1.07044 -1.07044 0.401 0.401

39 -1.80904 -1.809 0.6776 0.6777

48 -2.7403%2 -2.740 1.0264 1.0266

From Table 4 it can be seen that equation(11) gives excellent
results. Therefore, a simple method for dealing with the
singularity in adhesive bonds which can be used in engineering
design and analysis has also be established. This approach is
pimilar to conventional LEFM but different in that there is no
crack length (in fact, no crack at all). This has not been
done before to the authors knowledge.
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e In Fig.4, Jo is plotted as a function af T2, It can be seen that
el the E%FM,regultspdiffered signicantly from the LEFM result; when
i ’ i excessive yielding takes place. Plastic effects must therefore
iﬁ: g:;zezgyfggniizezigslé;:e e be taken iito account and the LEFM methods are no longer ap-—
cases, and the steel is treated plicable. From Fig: 4, the.fun(_:tion Y, can be detr::rmlned for the
as being linearly elastic. The ~ e geometry and material combination concerned. In Fig.5, Yo is no
elasto-plastic stress-strain £ " longer a constant.but varies with applied load because 0 the
curve for CTBN is the same as 2 s \\ material plasticity. For a non-l::Lnear system, a series of ana-
before. As the plastic zone is L7 ) lyses is needed in order t¢ obtain the Y function.
bigger for this configuration /’/”) /
than for the SEBN specimen (be- Py S g /’
cause of the weaker singularity ;/ / w
without a crack), the plastic R/ / , ) 3
effects can be clearly seen now. BeTme e e e e } /
( The contour plot of plastic aoers ) i W “ & B
energy density in Fig.3 is under genstyn Mym® g 7 l
an applied nominal stress T of  pj, 3 Contour plot of plastic = /
48 MPa and shows how big the & energy dgnsity ig CTBN o Y, . "
plastic zone is. showing the plastic zone. z / 2 -
Ji values for all 10 psths at an applied stress, T, of 48 MPa = / 5
are shown in Table 5. The integral paths 1, 2 and 4 had passed o6 /
through the plastic zone. Table 5 shows that the path indepen- / . Lerm
dence of Jp is retained even for those paths through the yield ot //
zone. The numerical values of J3 for path 10 for various ap- ~ *=
plied loads are compared with the elastic results in Table 6 . o <I
Since J is dependent on the bond line length, this comparison o me 7w we  we o  zs0
can only be made for a specified path (path 10 here). Table 6 A N o
shows that in plastic analyses, values of J were greater than 2 (1\/[1\1/;112)2
! for the elastic analysis, especially for J2 which acts to se- 5
parate the two materials along the bond line interface. Fig.4 Comparison of elastic Fig.5 Yo function against T
and plastic J; values for the simple bond.
i Table 5. Numerical J for plastic analysis
%‘g No. path length interface J9 Jdo Numerical methods can be used to derive 'the ghape function' Y
mm mm KJ/m2 KJ/m2 curve for any particular combination of materials and geometry.
1 4.848 0.965 -2.472 1.826 Once the Yj functions have been determined, they can be used to
2 3,270 0.65% -2.096 1.797 estimate Ji in engineering applicati(_)ns usipg eq.{H) as in
3 11.949 2.848 -4.002 1.855 elastic cases. The present approach is promising in dealing
4 7.110 1.55% -3.03%1 1.823% with complex singular problems.
2 18.263 3.981 Tale23 1695
¢ . . -4. 1. ;
T 42.316 10.765 -7.150 1.884 REFERENCES
5 32:133 162985 5373 1:3?? ASTM Standard E399-T4 (1974), Annual Book of ASTM Standards,
= Par 0
10 Aot 48 105E 7. 177 13 Eshelby, J.D. (1956) in: Solid State Physics Vol.3 pp.T79-144
i Academic Press, New York
Table 6. Comparison of J values for the path No.10 Hutchinson, J.W. (1968) J. of Mechanic P . . ,
Load Jy Elastic Jq Plastic Jp Elastic Jp Plastic 16_pp 13-31 J. of Mechanics and Physics of Solids
2 > Kishimoto, K. et al (1980), Engg.Frac. Mech.13 pp841-850
MN/m KJ/m? KJ/m? KJ/m KJ/m Rice, J.R. and Rosengren, & F5566) 7. of Mechanics and
Physics of Solids 16 PP.1-12
15 -0.6905 -0.6905 0.1024 0.1054
30 -2.7618 -2.7659 0.4097 0.5434
? 39 -4.6675 -4.6902 0.6924 1.0966
i 48 -7.0703 -7.1768 1.0488 1.9138
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