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1. INTRODUCTION

The critical point in design and operation of pipes, vessels and aero- parts
is dependent on the ability to Predict the rupture and failure of its most
critical components. The analysis of nmumerous cases of failure revealed that
in many incidences, failure occurred at stresses lower than design stresses.
The origin of these failure has been found to be due to flaws which become
critical as the stresses inerease or which grow to a critical sige during
the cyclic operation of vessel. In order to predict such failure, it is
essential in the design to consider the behavior of flaws under stress and
the intensifacation of these stresses around the crack for prediction of
crack initiation and subsequent propagation. Accurate evaluation of these
stress intensity facters in plates, cylindrical and spherical shells is of
great importance in the safety analysis of pressure vessels and aero-space
parts.

The fracture problems of plates and shells is much more complicated
comparing to in plane fracture, Strictly speaking, this 1is a three
dimentional problem and different approximate theories for cracked plates
and shells are acturally different degrees of approximation to the accurate
three dimentional analysis. Because of the difficulties, the numbers of
papers about cracked plates and shelles appeared in the literature is not
great. Among those papers,most of them are dealed with the analysis for
infinite plates and papers concerned the finite sige of cracked plates are
rare.

Nowadays, linear classical plate and shell theory is still the basis for
analysing engineering plablems,and the standard for design. It is badly
needed to investigate the range within which classical plate and shell
theory could give adequate results. More accurate calculation for stress
intersity facters for finite cracked plates is also needed in engineering
application.

This paper mainly summerize the research work carried out in our group
during the past decade. Some of other author's investigation could not be
included here, because of limited length of the paper. The charecteristics
of our research work are:



(1) Reissner's theory which account for transverse shear deformations is
used to investigation cracked plate and shell, in order to avoid the defect
of the classical theory and als¢o make the analysis not too complicated.

(?) Analysis was started from study the stress strain field near the crack
tip.

(3) The "local-global method"” is used to analyse the cracked plates and
shells, therefore more accurate calculation of stress intensity factors can
be achived.

2. THE DEFECTS OF CLASSICAL KIRCHHOFF'S PLATE THEORY IN FRACTURE
MECHANICS

On the analysis of fracture problems for bending cracked plates, earlier
studies were mainly based on lirchhoff's theory that assume that a line
vertical to the mid-plane remains unchanged in length and still vertical to
the mid-plane after the deformation. It leads that deformation u,v,w of the
plate can be expressed by one function w(x,y) and the equilibrium equation
is

DVZviw = q (2.1)

where D is bending stiffness.
D = Eh?/12(1-v ?) (2.2)

Three typical kinds of boundary conditions are as following
1) Fixed conditions: w=w, w/ n=9.,
2) Simple support conditions: w=w, M.=M.
3) Free conditions: Mo=Mn, 9Mn./3s+Qn=Va

Along the free boundary, there should have three boundary condtions, but in
Kirchhoff's plate theory, because of the governing equation is of fourth
orders, only need two boundary conditions, so it is needed to introduce the
effective shear force

Vn=9Mas/3s+0 , (2.3)

From the energy viewpoint, it can be proved that in Kirchhoff's theory Mns
and Q. is not independent. If displacement w get a variarion & w, then the
variational work

5 A S c(~Mns (96 w/35)+Q. 6 w)ds

~[Mas & WIa+ S c ((3Mns/35)+Qn) & wds (2.4)
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s0 Vn.=0M,../2s+Q. is the general force corresponding to general displacement
w. Therefore the conditions of free crack edge can not be satisfied exactly,
if Kirchhoff's theory is employed to study fracture in plate.

Williams''' expanded the displacement to a series of eign-functions
satisfying the boundary conditions in crack edge, and found the general
expression near the crack tip for bending plate. Sin,G.S. and Paris, P.C.'?’
obtained the stress intensity factor for infinite plate by using the complex
function method. The moments can be expressed by complex function:

M.+M, = -4D(1+v )R.[d "(2)]
M, -M +2iMe, = zD(l-v ) 2 "(2)+ ¥ '(2)] (2.5)
Qx-1Qy=-4D¢ "(2)

and the complex stress intensity factor K can be defined as

K = K; —iK” (2.6)

where K: and K,; are the stress intensity factors for mode I and mode

Il respectively The free crack edge boundary conditions may be written as
(Fig 2.1 )

Mnly-0 =0, Unly-0 = 0 (2.7)

If the displacement w is assumed as following:

w =§H;(r,9) = )Er*" *'F(r, 0) (2.8)
then
or (K:2/~/2nrh) [(3+5v ) /(1+v )cos (B /2)-cos (38 /2)]

(Kiz/~/2Znrh) [(5+43v)/(T+v )cos(O /2)+sin(36 /2)] (2.9)
(krz/~/Zmrh) [-(1-v)/(T+v )sin(8 /2)+sin(3 0 /2)]
T.. = 0(r27%)
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Fig.2.1

The singularity of shear stress is r °7%, which is different from the
results obtained by three dimentional analysis. Since the shear deformation
is neglected in classical theory, the shear force is not an independent one,
therefore only two independent stress intensity factor cam be obtained and
stress intensity factor for mode [l is not independent. besides the angular
variations of shear are not corssistent to that of in-plane stresses. So the
analysis of combination of tension and bending could not be carried out
under classical theory. All of this are caused by the unsatisfaction of the
free crack edge boundary conditions and the incorrect representation of the
singularity near the crack tip.

For an infinite plate subjected to uniform bending moment M the stress
intensity factor is

K: = (12z/h*)MS/a , Ko = 0 (2.10)
3. THE PLATE THEORY WHICH ACCOUNT FOR TRANSVERSE SHEAR DEFORMATIONS
(1) The Stress Singularity Near the Crack Tip.
Since 1960's the Reissner’'s plate theory was introduce into the analysis of
bending cracked plate. The basic of the Reissner's plate theory is that any

straight line vertical to the midplane remains a straight line and the
lenght unchanged after deformation. This leads to the following expression:

u(x,y,z) = -z®x(x,y)
vix,y,z) = -z% 5 (x,y) 3.1)
wix,y,z) = wix,y)

where the w. and ¥, are rotations of a line in plane x-z and y-z.
respectively.



The equilibrium equation are

X I-v Fv. I+v 2y, aw
D¢ + + }4Ce— - ».) =0
a3 x? 2 ay? 2 9 x3y ax
39, I-v e, lvv F 9, aw
D * + ) + C—— - 9v,) =0 (3.2)
ax? 2 ax? 2 Ixay oy
W Fw IV x Y >
C( +— - —— - ——) + P =0
ax? ay? ax a2y

The analysis of the cracked plate based on Reissner's theory is very
complex. Usually, the intergal transform method is used, and leads to solve
an intergal equation. The typical work was done by Knoles and wang '?'. They
first reached the result that all of the stresses have the same singularity
(r~'”7?) near the crack tip and the angular distribution is the same as that
of plane problems.

The stress field near the crack tip is

K: (Z) [} 2] 36 K:i: (2) 0 ] 30
g, =————cos—(l-sin—sin—) - ———sin—(2+cos—cos—) + 0O(r,)
~2nr 2 2 2 v2nr 2 2 2
K: (2) 8 0 36 Ki1 (Z) 2] ;] 30
0, =———cos—(l+sin—sin—) - ———sin—cos—cos— + 0(r°)
J2nr 2 2 2 ~J2nr 2 2 2
(3.3)
K: (Z) 2] 0 je Ki: (2) 2] ¢] 30
Tyy =——————CO0S—SiNn—Ccos— + cos— (l-sin—sin—) + 0(r°)

VInr 2 2 2 VInr 2 2
-(Ki11(2) /2 r)sin(@ /2) + O(r°)
Ty = -(Ki1:(2) /IR r)cos(© /2) + 0(r°)

-
x
~
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For an infinite plate subjectel( to uniform bending, the stress intensity
factor can be expressed as

K(Z) = (12Z/h*) ® (I)MSa

where the @ (1) is the solution of the second kind of Fredholm's intergal
equation.

It is an important progress to use Reissner's theory to analysis the cracked
plate. an accurate stress strain field near the crack tip is obtained by
Reissner's theory which accout for thansverse shear deformations which was
neglected in Kirchoff's theory. This is supported by photo-elastic
experiment done by smith,D.G. ant smith, C.W.'”’. why the difference between
the theory of kirchhoff's and Reissner's is so greatly. They are not only
different in the distribution of the stresses near the crack tip, but also
in the order of the singularity of the shear forces. Many literatures
generally interpret them into the unsatisfaction of the free traction
boundary condition. For more detiil let us consider a simple example.

A rectangular plate subjected to uniform load on the surface, three of the
edges are simple supported, and the other is free (Fig. 3.1 (a)), the shear

force Q in the line x=a/2 is shown in fig 3.1 (b).
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The shear deformation increase with the increase of dimensionless parameter
8 ,=D/(c.?). If & .,=0, corresponding to the neglection of the shear
deformation. It can be seen from Fig.3.1 (b) that the valuse of Q, are
almost the same for all &, in the area far from the free edge, but for the
area near the free edge the differences are great for different & ,.

The smaller of 6. the more rapidly change in the value of Q, and also the
smaller of the area effected by free edge. This wmeans that in Reissner's
theory, Q, and M.,is zero in the line y=b, but near the free edge in which
line Q, and Mx, is not small. So that there is a boundary layer Q, and M,,
drop down rapidly.

Different from the Reissner's theory, an effective shear force V, was
introduced in Kirchhoff's theory.

V, =9 M.,/ax + Q. (3.4)

It change slowly near the free edge, and almost does not relate to the & ..
The effective shear force conceal great change of Q,, M.,. So that
Kirchhoff's theory can not describe the real stress status near the free
edge well, the Reissner's theory should be used.

Reissner's theory should be used to investigate the stress strain field near
the crack tip, since the crack edge is also free edge.

Only the frist term of the stress strain field was given in[3,4]. The whole
field near the crack tip was still unkown. In 1979, Muthy etc. found an
displacement expansions for mode I in Reissner's plate. In 1980, Chun-tu
Liu found an expansions for stress strain field near the crack tip for mode
I1,II and I, and expound the mechanical properity near trhe crack tip in
Reissner's plate. The expansions play the same role in plate as williams'
expansion in cracked plane, and set up a sound foundation for mechanical
analysis on cracked plate.

(2) The Solution for Stress Field near the Crack Tip.

(A) Perturbation method:

Let
P, *=r*(as(0) + aj(0)r + a3(0)rz + ...)
Wo'* =r*(b3(0) + b} (0 )r + b3(0)r? + _..) (3.5)
Wi =pr(c3(0) + ¢} (B )r + c2(0)rz + ...)
7



substitute them into the equilibrium (3.2) and boundary conditions,

Me = Mco = Qs =0 (3.6)
the solutions were found in [13], perturbation.
(B) Displacement function Method ?

Based on Reissner's theory, the governing equations could be expressed in
terms of three generalized displacements W,, 9, and w as formula (3.5).

Two displacement functions F and f alse introduced, therefore
¢, =9 F/ax + 3f/ay ¢, =3F/ay - af/ax ‘ 3.7)
Sudstituting eq.(3.7) into (3.2). we have

3/ax[DVZF + C(W-F)] + a/ay[(D/2) (I-v )vZf-Cf]
3/ay [DVZF + C(W-F)] - 3a/ax[(D/2) (I-v )vZf-Cf]

0 (3.8)

nu
o

This the Cauchy-Riemann equation. from which it foollows that
(D/2) (1-v )V2f-Cf+i [DVF+C(W-F)] = Cod (x+iy) (3.9)

Separating the real part from the imaginary part in eq.(3.9).we have

V2f - 4k*f = 4k?Re®

W=F - (D/JC)VZF + Im® 2:; 8:33
where ’

4k? = 2C/D(l-v) = 10/h? 3.11)

Substituting eqs (3.7) into eq. (3.2). we have

DVZv2F = P (3.12)
For a.cracked plate, the bending fracture problems are reduced to solve two
equations, (3.10.a ), (3.12) in terms of F and f with the Corresponding
boundary conditions.
The function ® (x+iy) could be expanded in serirs

d (x+iy) Butiap)o”

= %};:Sp#iap)dﬂ'(cosuﬂﬁsinuﬂ) (3.13)
The .solution of eqs (3.10.a), (3.12) could be expressed in the sum of a
particular §olulion and the general solution of the corresponding homoge-
neous equations.
The particular solution could be chosen as follows

f, = -Redp F, =0 (3.14)
The homgeneous equation corresponding to eq. (3.10.a) is

vif, - 4kif, = 0 (3.15)
When p=o, from eq. (3.12), we have

DviviF = 0 (3.16)

Equation (3.16) is a biharmonic equation, we have

F(r,0) = r**'F(8) 3.17)
= r**' [Kacos(A -1) 8 +L.sin(A -1) 8 +M,cos(A +1) 6
+N.sin(A +1) 0]

Equation (3.15) is a Helmholtz's equation, function f could be expressed in
modified Bessel's function. From the condition of finite strain energy, we
should drop out the modified Bessel's function of the second kind and f
could be expressed in modified Bessel's functions of the first kind I.(2Kr)

only.

For symmetric case

f, = sinA 8 1,(2kr) = sinA 8 X (k?"r**?"/m! ¢ (A ,m)) (3.18)
For anti-symmetric case

f, = cosA 8 1,(2kr) = cosA 8 X (k2*r**2"/m! ¢ (A ,m)) (3.19)
where ool

o (A,m) = (A+1)(A+2)...(A +m) (for m>1) (3.20)

¢ (A,m) =I (for m=0)

To determine the coefficients of expansion, it is convenient to express the
general solution for eq.(3.15) in the following linear combination.

fo =2 5 (Acoiezafa-rezn * Baoyezaflioiizn) (3.21)

x Aveu,

Substituting eqs (3.17) and (3.21) into egs (3.15), and (3.16), the linear
equations whose unknowns are the coefficients of the expansions could be
obtained. In order to satisfy these equations, we let

A = +n/2 n=0,1,2... (3.22)

With the condition of the finite strain energy, A should be positive. By
using the boundary conditions, the relations between coefficients in eign-
function expansion could be found. with the known expression of F and f, the
exprssion of Y .,¥, and w as well as M., Me, M:s, Qr,Qe, could be obtained.

This paper gives the general expansions of elastic stress-strain field at
the crack tip in modes I, Il and Il for Reissner's plate. The expansions can
serve as a basis for numerical methods for calculating stress intensity

factors in plates,such as boundary collocation method, variational method,
asymptotic method and higher order finite element method.

It has been pointed out in this paper that it is necessary to use basic
equation of Reissner's theory (3.10) given in this paper for cracked plates.

(3) Numerical Examples.

Example |. Infinite plate subjected to uniform bending moment. This problem
was studied by Hartranft and Sih [2] . The stress intensity factor is

K, (g) =(12Z/h?*) ¢ (1)M/ m a (3.23)
The maximum value takes place at z=h/2.
K, = (6m/h) o (D Ta (3.24)

In order to simulate infinite plate, the plate semilength L should be larger



than 20a. The graph and result are shown in Fig (3.2) and (3.3),
respectively. L
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uniform bending moment solution with others

Example 2. Finite plate subjected to uniform bending moment. In order to
investigate the variation of stress intensity factor of finite plate with
different thickness and width, the stress intensity factor for a/L=0.1, 0.2,
0.4 and 0.5 are calculated. The results are shown in Fig (3.4). The finite
size coefficients Kr / K: are shown in Fig (3.5), where K; denote K, for
infinite case.

Example 3. The effect oif boundary conditions on the stress intensity
factors. In order to compare the effect different boundary conditions on the
stress intensity factors, the calculations for simple supported plate and
free edge plate are carried out. The results are shown in Fig (3.6). In the
calculation the bending moment is taken as | kg-cm/cm. and h/a=1l.

EAIL a/L=05
E i / o/L=04
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Fig.3.4 (a) Variation of stress (b) Variation of stress intensity
intensity factors with plate width factors with plate thickness

Free plate
_::;——”//’//’

N\
Simple supported
plate

|
K,(kg/cm?)
CoONDw

. 1 ! | 1l
o or Qa2 03 04 05 0 0Ol Q02 03 04 05

a/L

Fig 3.5 Finite size confficient Fig 3.6 Effect of boundary
conditions

Example 4. Cracked plate subjected to uniform twist moment. This is a mixed

mode problems (Fig.3.7). For infinite case, this problem was studied by
Delale [20] using an intergal transformation method. The dimensionless
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stress intensity factors k, and k, are

N \/‘\/ Ny
k '
ks

Kii(h/2)/(6M/h?) S/ a
| SRR (0)/(5H/h2)v na

non

(3.26)

2a

where K::(h/2), K;::(0) are stress
intensity factors for mode [I and
mode Il ,respectively. The maximum IR RTAT YR
stress intensity factor for mode II 2L
takes place at plate surface, for = T
mode [l at the middle of the section.

In order to simulate the infinite

plate, we let L=100a, the solution

compares favorably with that in

ref. [20] (see Fig . 3.8).

I AIAIATA

Fig.3.7 A cracked plate with uniform
twist moment

For a finite size plate, the variation of the stress intensity factors with
width and thickness is shown in Fig. 3.9.
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By using a higher order special element and hybrid technique, the stress
intensity factors of infinite plate for mixed mode are calculated with
higher accuracy both for mode II and mode TI.

Both stress intensity factors K:;: and K;,:; increase, with the increase of
ratio a/L.

For mixed mode, the size of the special element should be taken 0.04-0.06
[a.h] ®min.

For mixed mode, if the expansions of stress functions M., M,, M,,, Q., Q, in
special element are taken as terms of 0(r°/?) the good results can be
obtained.

(4) A path Independent Intergal in Reissner's plate.

Similar to J-intergal in plane fracture problem, a Js intergal in Reissner's
plate was proposed [21], in which the authors employed virtual work theorem

11



to reach an integral independence to the path.
Jn = S cUdy+ S < [-Qa (30/0x) +H. (29 < /ax) +M, (39 , /ox) ] ds 3.27)

where U denotes the unit strain energy, M.,M, denote boundary moments, Qn
denotes boundary shear.

The relation between Js and stress intensity factors is
Ja = (h/8E) (K} + K{{) + (4h/15G)K% (3.28)

Ja can be used in approximate analysis of stress intensity factor. It is
also can be used as a parameter in elastic-plastic fractrue analysis.

4. STUDY ON CRACK SPIERICAL SHELL FRACTURE PROBLEM
(1) The governing equations for cracked spherical shells

In the earlier literature the classical theory was used [18.19]. Even in
present, many standards for engtineering such as the standard for pressure
vessel are still based on the classical theory for plates and shells. In
recent years, Reissner's theory by using ten order differential equation was
derived [25]. Since the problem is complicated, only the first term of the
expansion was given [20,26,27], In order to calculate stress intensity
factors, the authors proposed in expansion of the stress-strain field at the
crack tip including mode I ,Il and I, we also got some significant results
in bulging factors.

The Stress-Strain Fields at Crack Tip in a Spherical Shell.

A spherical shell containing a through crack is shown in Fig. 4.1 with the
crack tip at the origin of the coordinates. The shallow shell theory, taking
into account of shear deformation, could be expressed as follows.

U L), 5t

00 x R

x

A—-A

Fig.4.1 A cracked spherical shell

ERl ™ 1-v 32w, l+v 3%, EL

D( + + ) + C—— - ’n) =0 (h-l)
a3 x? 2 ay? 2 Ixay ax
l+v 379, I-v 3%y, 82'7 EL ]

D( + ) +C6—— - vx) =0 (4.2)
2 Ixay 2 ax? ay? ay
EXL] W EL IPR-1

C—— + —— = —— - ——) + kv2d +q =0
ax? ay? ax 3y

where k is the curvature, ¢ is the stress function

N.=3? ¢ [fay? N, =3 ¢ /ax? Nx»=-2% & /axay (4.3)
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the compatibility equation is

(1/B)v:V¥ ¢ + kv?W =0 (4.4)
where B is in plate stiffness.
Introducing displacement functions F and f, let

v .=2F/ax + af /ay y,=3aF/ay - 3f/ax (4.5)
Substituting eq.(4.5) into eq. (4.1), we have eq.(3.8) again.
Similar as section 3, we have

DviF + C(W-F) = Cimo

(D/2) (1-v)v2f - Cf = CRed (4.6)

W =F- (D/C)V?’F + Ind® (4.7)
substituting eqs. (4.5), (4.7) into eq. (4.2), we have

DV?V:F - kv? 0 = q (4.8)
Substituting eq. (4.7) into eq.(4.4), we have

(1/B)v2vi ¢ + kvZF - k(D/C)v*V?*F = 0 (4.9)
The governing equarions could be reduced to t.hrec. egs. (_A.G),(A.B) and (4.9)
in terms of F, f and ¢ . The function f, which is similaer to that in the

bending plate case, is uncoupled. The functions F and ¢ should satisfy two
fourth-order differential equations.

1f q=0,from eq.(4.8),(4.9),we have
v29292F - (k?B/C)v2v?F + (k?B/D)Vv?*F = 0 (4.10)

It can be proved that,function F in eq. (6.12) is the sum of fqllowing three
functions Fo, F, and F, which should satisfy the following equations

respectively.

F'—‘Fo”Fl*Fz (b.ll)
ViF, = 0 (4.12)
v2F, - 4A%F, =0 (4.13)
v2F, - 4A3F, = 0 (4.14)
where
4A? = k*B/2C + VK*BZ/4CI-k’B/D
412 = k?B/2C - Vk*BZ/4C7-k?B/D
If F is known, the ¢ could be obtained from eg. (4.6)
¢ = &do + (4D/K) (AZF, + AZF2) (4.15)
where ¢, is an harmonic function, which should satisfy g2 ¢ 0=0.
From eq.(4.6), function f could be found as
f = fo - Red (4.16)
fo should satisfy the following equation
vif, - 4pif, = 0 (4.17)
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where
4p? =2C/D(1-v) (4.18)

the boundary conditions are

M¢ = Mroe = Qe = Neo =No =0 when 6=+ 1 (4.19)
The analytic function ® could be expanded in series

¢ (x+iy) = (B .+ia,)g" = (B .+ia.)r" (cosp® +isinp ) (4.20)
Harmonic function F, could also be expanded in series

Fo = 20> [KTicos(A+1) 0 +L,sin(A +1) 8 ] (4.21)

Functions f,,F, and F; should satisfy eq.(4.17),(4.13),(4.14) respectively.
These equations are Helmholtz's equations. Their solutions could be
expressed in modified Bessel functions.With the condition of finite energy,
we must drop out the modified Bessel functions the of second kind. The
functions f,, F, and F; could then expressed in modified Bessel functions of
the first kind only.

Similar to the bending cracked plate problem, substituting the expansions of
f, F and ¢ into the boundary conditions eq. (4.19),the linear equations
whose unknowns are the coefficients of the expansions could be established.
Fl.‘ol these equations, the relation between the coefficients in the
eignfunction expansion could be found. The generalized displacements and
stress could be obtained after known the functions f, F and ¢ .

For the cracked spherical shells, a 10-th order differential equation could
be reduced equivalently to a system of the uncoupled 2nd-order equations and
a general solution (including Modes 1 ,]Il,ll1) for stress-strain fields is
found at crack tip which plays the same role as Williams' expansion for
plane problems.

The crack-tip fields given in this paper extend numerical methods for plane
problems, such as the energy method, the boundary allocation method and the
high-order special element methed, to the fracture analysis of shells, and
provide a useful means for evaluation of stress intensity factors and even
for mixed mode analysis

(2) Numerical Examples.

Mechanical behavior of finite-size spherical shel are investigated and it is
shown that stress intensity factors increase with a/L under a bending load.
The variation of stress intensity factor under different boundary conditions
is also discused.

When the shear stiffness is very large, there seems no difference between
bulging factors obtained from Reissner'S theory and classical theory. But as
the shear stiffness becomes smaller, its effects become more and more
significant and reach a wmaximuem deviation of 46%. Generally, classical
theories give a rather unsafe eviluation. For the convenience of engineering
applications, we propose an approximate formula for bulging factor.

In order to obtain a satisfactory accuracy it is advisable to use an
expression of displacement up to r ’”? and select the size of the special
element as 0.la.

Fig. 4.1 shows a finite element sesh for a spherical shell containing a
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central through crack, with oxyz as global coordinates. A special element is
used to represent the stress strain field at the crack tip, and the
quadratic degenerate isoparametric thin shell element, which also takes into
account transverse shear deformations, are used for ordinary element.

(A) Finite Size Spherical Shell snbjected to Bending.

Infinite shell has been investigated by G.C.sih using an intergal transform
technique. However, as we know, the spherical surface cannot be
geometrically extended to infinity, so the finite size ratio a/L is also a
parameter that effects the value of the stress intensity factor. Fig.4.2
gives the stress intensity factors for different a/L values under a bending
load. In the figure A =*./12(1-v?) a/~/Rh is the curvature parameter. when
A=0, i.e. the case of flat plate, the numerical results approach the
theoretical values obtained in [4] with an error less than 1% as a/L—0, and
also agree very well with the results for finite plates obtained in [16] .
When A >0, that is the case of shell, our results within the range of
calulations, drop by a maximum of 30% compared with the theoretical values
as a/L vanishes. This can be interpreted by the fact that for a given value
of or a/R, the shell goes deeper and deeper as a/L decreases, and the edge
effect becomes wmore and wmore significant, and the assumptions for the
shallow shell theory are no longer valid. This indicates that the results
obained in [22] are invalid for sone ranges.

(B) Considering a spherical cap of L/R=7n /4 under uniform pressure q, the
stress intensity factors for different boundary conditions are given in
Table 4.1 Compared with the stress intensity factors for free edge shells,
the effect of simple support shell has a maximum decrease of 16%Z ,and the
effect of fixed support shell has a maximum decrease of 20%.

Table 4.1 Stress Intensity Factors Under Different Boundary

Conditions (x=1)
K;/(qoR/2h) /T a
A 0.2 0.6 3
Free edge 1.222 1.593 1.800
Simply Supported 1.109 1.332 1.650
Fixed 1.065 1.271 1.579

(C) Bulging Factor.

Using Kirchhoff's classical thin shell theory, E.S.Folias (1965) obtained a
formulation of stress intensity factor for pressurized spherical shell,
which can be expressed as

K, = Mo Ta (4.22)

where o =qR/2h is the shell stress, q the uniform pressure, and M the
bulging factor,

in which M =(1 + 0.59A2)'72 (4.23)
A =4 /12(1-v?)a/JRh (4.24)

The classical solution of bulging factor is onmly a function of A . The
application of Reissner's theory introduces a new mechanical parameter
k=D/Ca?,which is the measure of transverase shear stiffness. Fig.4.2
expresses the distribution of bulging factor as a function of A for various
of x. It follows from the result that for very small values of «x the
bulging factor agrees well witrh the classical value (an error of about 1Z
for x=0.001) and increases as Kk increases. It has a maximum error of 467

within the range of our calculation.
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Figh.2

Generally, in practical problems A <2, x<2, our calculation indicates that
classical bulging factors are only valid for large a/h, otherwise it is
preferable to use bulging factors on account of the shear stiffness.

Analysing the numerical results, we obtain an approximate formula for
bulging factor

M(A,x) =M (I+1.2x'?Ae *) A<2.2 (4.25)

which involvesa an error of about 4%

5. AXIALLY CRACKED CYLINDRICAL SHELLS

The study of cracked cylindrical shell is of great importance in the safety
analysis of engineering structures, such as pressure vessels, pipelines,
etc. This problems was investigated first with the classical shallow thin
shell theory [18,19] and then vith Reissner's theory, both using integral
equation approaches. Since the problem is complicated, only the first term
of the stress expansion was given and stress intensity factors for infinite
shells were evaluated. In [23] the quarter-point thick shell elements were
applied to cylindrical shells with cracks. But these elements can only be
used to approximate the stress fields in a region near the crack tip. In
order to calculate stress intessity factors, it is necessary to use more
general solution for stress-strain fields at the crack tip.

A perturbation method is used to solve the 10th-order differential equation
of Reissner's shells. The analysis involves perturbation in a curvature
parameter A2 (AZ=[12(1-v 2)]'/? a?/Rh). The perturbation solution, which
takes transverse shear deformations into account, in a special element at
the crack tip serves as shape functions. The 8-node thick shell elements
are used for conventional element in the local-global analysis. Numerical
result are obtained for symmetrical problems and the effect of finite size
on stress intensity factor is discussed.

(1) The Governing Equations and Their Perturbation Solutions.

A cylindrical shell of radius R,
thickness h, containing an axial
through crack of length 2a is
shown in Fig. 5.1, with the crack
tip at the origin of the coordi-
nates. The governing equations
taking transverse shear defor-
mations into account, are as
follows:

Fig.5.1 Cylindrical shell with
axial crack
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%W« I-v ¥« 1+v 3w, aw

D( + — + ) +C—— - v) =0
ax? 2 2y? 2 axay ax
2 I-v 9 I+v 379« aw
Bt - — " & ) +C(— - ¥,) =0
2 I x? 2 axay ay
ay 2 x 5.2
b« 9bs 1 3¢
c(viw - - ) + — +q=0

ax ay R ox?
(1/R)v2v2 ¢ + (1/R) (3*w/ox?) = 0
Boundary conditions along the free crack edge are:

8 = += My =My, =Q, =N, =N, =0 (5.2)
s i =2 2 =2 / x?, N=— ¢/ x y, w is
where ¢ is the stress function, Nx ¢/ y*, N [ » B ) )
deflection, and ¥ . and ¥, are transverse shear de.for-auons.. B is tension
compression stiffness; D is bending stiffness; C is shear stiffness. q 1s

uniform pressure.
Introducing displacement functions F,f let

¥ .=9F/ax + af/ay $,= 3F/ay - of /ox (5.3)
Substitute equation (5.3) into equation (5.1), after some mathematical
manipulations we have:

v2vZy + A 2(a2w/ax?) (5.4)
VEVRF - A 2(a% ¥ /ax?)
w=(l - xv?)F + Im¢
v2f - 4p2f = 4p’Red

non
o

where $=¢ //BD, Az2=[12(1-v 2)]'“?a?/Rh, x=D/Ca?, 4u=1/(l-v) x, ® is an
analysic function.

Expanding %, F, ¥ in power series of A%, we have

P = A9, F = AZ"°Fa, w = gkz‘w. (5.5)
0=§A"¢. f=§l“f.
substituting equation (5.5) into equation (5.4), we get the perturbation
equations:
=0
for n vivig, = 0 (5.6)
viVZF, = 0

wo = (1-x9%)F, + Imd o
vif, - 4pif, = 4p?Repo

For n>0, we have,

VIyZ g, =-3%Wa-, /3X? (5.7)

V2V2Fa =32 W% a-1/0x?
wa = (I-x93)Fa + Im® .
92f, - 4p?f. = 4p’Redn

and details of solution for ¥., Fa, Wa and f., can be found in [17].
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(2) The Calculation of Stress Intensity Factors

Fig. 5.2 shows a mesh adopted for an axially cracked cylindrical shell with
OXYZ as the global coordinates. A special element is used to represent the
stress-strain fields at the crack tip and the quadratic reduced intergation
thick shell elements are uset for conventional elements. Instead of
Kirchhoff's assumption, we take the rotations as independent degrees of
freedom in these elements and this is agreeable to that in highe order shell
theories, e.g. Reissner's theory.

Numerical results are given in the forms of stress intensity factors for two
loading conditions, 1i.e. constant bending moment and uniform internal
pressure. For constant bending moment M with maximum surface stress
o ,=6M/h.

Ki = (Kap + Kev) O o/ M2 (5.8)

and for uniform internal pressure q with membrane stress o.=q R/h.
Ki = (Kaa + Ken) 0u/ W (5.9)

where K.», Kua are stretching components of the stress intensity factors;
and K.s., Kia are bending components of the stress intensity factors.

imom Eoauo
Ku - Ka
---a
N /"'“’
v g BRI yepep——_
0.0
ar o—[3])
a-i4)
(X 0.00

Fig.5.2 A mesh for cylindrical Fig.5.3 THe variation of K..
shell with axial crack and Kap» with a/L

(A) Finite Size Cylindrical Shells under Constant Bending Moment.

A cylinder of length 2L is subjected to constant bending moment. The results
are given in Fig.5.3 When a/L=0.01 the total intensity factor K: compares
very well with that obtained by [25] using quarter-poing thick shell
elements. The difference between them is about 14%.

(B) Cylinders Under Uniform Internal Pressure.

Numerical results are obtained for cylinders with the ratio a/L=0.03.
Fig.5.4 and 5.5 show respectively the effect of shear stiffness on
stretching and bending stress intensity factors Kv. and Kuan. It is noticed
in the figures that when x —0, K.. approaches classical value but K,.
differs considerably from the thin shell theory result.

Combining the stretching and bending stress intensity factors we obtain the
bulging factor:

M = Kaa +Kba (5.10)

which are given in Fig.5.4 shows that distribution of bulging factor as a

18

function of A for various k. We find that within the range of the
calculation shear stiffness has a maximum effect of 33Z. This error becomes
larger while x increases, since, at this time, the effect of shear
stiffness is also included in it .

_mt ' X i\\: R
—Q:Xr— J

Fig.5.4 Stress intensity Fig.5.5 Stress intensity
factors Kaa factors Kea

Upon all of above, it can conclude following:

(a)For symmetrric case (mode [ ),an asymptotic expression of displacements
with expansion up to the term of r 77? is enough to obtain a good accuracy.

(b) Application of the stress-strain fields to a special crack tip element
enable us to get more accurate evaluation of stress intensity factors than
the quarter-point thick shell elements. The result is better than that of
[24] ,which involves an error about 14%.

(c) Stress intensity factor increase with the ratio a/L.

(d) It follows the calculated results that the classical value of 'the
stretching component of stress intensity factor seems to be the lower limit
of the Reissner's theory.

(e) Within the range of the calculation, shear stiffness bas a maximums
effect of 337 on the bulging factor, and finite size has a maximum effect of
about 12%.

6. CIRCUMFERENTIALLY CRACKED CYLINDRICAL SHELL

The stress strain fields at crack tip in a circumferentially cracked
cylindrical shell (including Mode I ,Il,Ill,)are obtained by a perturbation
technique, which provides a better function for evaluation of stress
intensity factors. The asymptotic expressions of displacements are adopted
up to the order of O0(r'“2?) in the computation. The results show good
agreement with the theoretical value.

It follows from the calculated results that the classical values of bulgigg
factors, being the lower limit of those of Reissner's theory are only valid
for very large ratio of a/h. Otherwise, the transverse shear effect should
be taken into account.

A new approximate formula is given for bulging chtors'which includes the
shear effect. With the range of our computation, it gives a better
description of the bulging factor than the classical one.

Consider a cylindrical shell of radius R, thicknes; h, containipg_a circum-—
ferential crack of length 2a, with the crack tip as the origin of the
coordi-nates as shown in Fig.6.1. The governing equations can be expressed

as Hu, (1981):

19



Fig.6.1 Cylindrical shell with a cricumferential crack

3P« I-v 2w, 1+v iy, ow
D¢ + + ) +C(— -w) =0
2 x? 2 ay? 2 axay ax
3’y , I-v 3%y, l+v azv, aw
D¢ - + ) + C(— -9,) =0 6.1)
ay? 2 ax? 2  oxay ay

C(v2w - o9 . /ox -ov/cy) + (I/R) (3% /oy?) =0

(1/B)v*e + (1/R) (3%w/cy?) = 0
where ¢ is stress function, v is deflection,$ . and ¥, are transverse
shear deformations. B is stretching stiffness; D is bending stiffness, C is
shear stiffness. Introducing displacement functions F,f,let

W . =3F/ax + 3f/ay, y9,=3F/ay -af/ax (6.2)
substituting Eq.(6.2) into Eq.(6.1),after normalization of the coordinates

with half crack length a and through some mathematical manipulations, we
have:

v?yZy + AZ(3°w/oy?) =0

VZVIF - AZ2(3%y /oy?) =0 (6.3)
w = (l-xV?)F + Imo =

72 f - 4p?f = 0 f=f- Reo

where 2=[12(1-v ?)]'“?a?/Rh, x=D/Ca?, 4p2=2/(l-v)«kx, $=¢ /vBD, & is
analytic function. The boundary condition aleng the free crack edge are:

0=+ 1, N,=N.,=M,=M.,=Q,=0 (6.4)
Expanding all the unknown function in power series of A ?, we have:

(F, £, 9 ,w,d) =‘§7\“1F..f-,$u,wu,¢.) (6.5)
in which ¢.,,F.,t:.,¢. are suppcsed to be the form as followings:

Y. = %}Z{}r“"z‘lA“"cos(l+I+2i—2j)B*B.Jsin(10|+2i—2j) 0]

F, = %}?r“"“lK““ccs(l+I+2i—2j)O*B“sin(lflei—2j)9l (6.6)

. = 'Z;'Zr""z‘(ﬂ Leia %) [cos(1-1+421) B +isin(l-1+21) @]

f = Z}Zi} [M“’cos (1-142i-2n) 8 -N, '’ sin(1-1+2i+2n) 8 |
i i ez

(_I)nPZ(-On)lJ-l02(-0-01-.1

n!' ¢ (1-142i+2n,m) n! ¢ (1+n-2+21,n)
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where i=v/-1,¢ (1,m)=T (1+m+1)/I (1+1),T (1) is the I' -function.

By properly choosing i's and j's both Eq. (6.3) and Eq. (6.4) can be
satisfied in the sense that it only leaves term of O(r?*-'”7%)

(A) Calculation of Stress Intensity Factors.

A finite element model is shown in Fig. 6.2 for a cylindrical shell
containing a circumferential through crack. A special element is used to
represent the stress strain fields at crack tip and the degenerate
isoparametric thick shell elements (Zienkiewicz, 1971) are wused as
conventional elements. A good agreement is found between our result and the
theoretical solution (Delale and Erdogan,1979) when a/L approaches zero
(with an error less than 22).

Fig.6.2 Fig.6.3 bulging factors
(B) Bulging Facters.

Falias (1967), using the classical thin shell theory obtained the bulging
factor for a infinite long cylinder with circumferential crack, which
depends only on the shell parameter. In our work using Reissner's theory, a
new parameter k =D/Ca? is introduced to the analyses to show the variation
of bulging factors with shear stiffness.Numerical results are shown in Fig.
6.3, the distribution of bulging factors is a function of A and K. It is
noticed that our results, although approaching to the classical solution for
very small x, show a maximum difference of about 30X when x becomes

larger.

The well known Folias formula which is currently used in engineering has the

form of
M=(1+0.097A2)'72 (6.7)

According to our analyses it gives rather an unsafe evaluation. Taking
account the transverse shear stiffness, we propose a new formula of the
following form:

M(A,x) = (1 + 0.09TA2)'72(1 + 0.25A x!719) (6.8)

which has an error less than 57 at a few point there it may reaches about
102

Susmary

In this paper so called “the local-global analysis” is used syste.apcally
for fracture analysis in cracked plates and shells. The general solutions :_)f
stress-strain fields at crack tip including mode .l,_-ade I1 and -od.e Ill u'|
Reissner's plates and shells were proposed. Similar to t_he \hllna’s
expansion in plane fracture problem, they revea_l the -echann.cal behavior
near the crack tip and provide a better foundation for numerical fracture

AFR-1—C
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analysis. The analytical method for the plane fraction problem, such as
variation method, asymptotic method and finite element method, could be
adopted for the plate and shell fractre analysis.

Based on the stress-strain fields, several kinds of high-order special
elements were proposed to substitute the dense mesh near the crack tip.
Meanwhile, since more accurate displacement modes are used,the accuracy of
calculation could be improved. For some complex problem,such as in the case
of mixed mode problems,more terms of the expansions is needed.

For plate and shell fracture analysis, the Reissner's theory was used to
avoid the defect of classical theory. There is obvious difference between
the results calcutated by using different theories.

It have been found that the classical values of bulging factors are the low
limits of those from Reissner's theory, and are only valid for very thin
shells. In other case the transfverse shear effect should be taken into
account. New formulae for bulging factors is proposed in [14,15,17].

Since fractrue mechanics is used in engineering,it have achieved greatly,
but even in the area of the plite and shell fracture there are many problems
reminded unsolved, such as the mechanical behavior of elastic-plastic plate
containing a crack, crack closing in a plate, and variation of the fracture
parameter with the coordinate along the thick direction. It is also urged
that to find more accurate and less expensive method for engineering
practise.
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