An Analysis of Dynamic Crack Initiation and
Growth in Elastic—Viscoplastic Solids

G. RAVICHANDRAN
Department of Applied Mechanics and Engineering Sciences,
University of California, San Diego, La Jolla,
California 92093, USA

ABSTRACT

A numerical method for simulating dynamic crack initiation and growth under stress wave
loading is described. Results are presented for both elastic and viscoplastic solids. Possible crack
motions are considered and some insight is provided for crack growth criteria in elastic-
viscoplastic solids.
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INTRODUCTION

In order to gain understanding of fracture processes in ductile solids under impact loading
conditions, it is important to characterize the critical conditions that prevail near the vicinity of a
dynamically growing crack. Analytical solutions are available for the problem of a semi-infinite

crack in an infinite isotropic elastic body and results presented are crack-tip quantities, such as
the history of the stress intensity factor Ki(t); see Freund (1986). The results available for the

rate dependent solids are limited and the analysis pertains to a dynamically growing crack under
quasi-static far field loading conditions; see Brickstad (1983). Analytical solutions are in general
not available for far-field quantities,such as particle velocities, and stresses for non-uniformly
propagating cracks under stress wave loading conditions, which are essential for interpreting
experimental measurements. Experimental techniques in dynamic fracture of opaque solids often

rely on data obtained from far field measurements, such as particle velocities in a plate impact
technique; see Ravichandran and Clifton (1986).

A finite difference method based on the work of Clifton (1967) is used in developing a numerical
method for analyzing dynamic crack initiation and growth under stress wave loading conditions.
A moving grid scheme is introduced for simulating dynamic crack growth. The numerical
simulation is intended to model a plate impact dynamic fracture experiment where a plane, tensile
square pulse of duration of about 1 [Ls impinges on a semi-infinite crack at normal incidence in a
plate bounded by two free surfaces parallel to the crack plane. Details of the experimental
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|echnigue are described else where; see Ravichandran and Clifton (1986). The accuracy of the
numerical method is assessed by simulating crack initiation and growth in linearly elastic solids
apd comparing the results with available analytical results; Freund (1986). In the elastic-
viscoplastic analysis some possible crack motions are considered and attempts are made to
develop insight into critical conditions that prevail at a crack tip.

GOVERNING EQUATIONS

The equations govemning the dynamic defonnatioh of an isotropic elastic-viscoplastic solid under
conditions of plane strain can be written in the non-dimensional form for small strains as
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Subscripts denote partial differentiation with respect to the subscript variable; u and v denote

dirnensior}less particle velocities inthe x and y directions respectively. ®(F) is the viscoplastic
shear strain rate in a simple shear experiment. The function F denotes the effective flow stress
for an isotropic material; J1, J2, andJ3 are the invariants of the deviatoric stress tensor.

The dimensionless stress componerts p, q, 1, and s are defined by

P =(0xx+Oyy)2, q= (Cxx-Oyy)p, r=90zz, $=Oxy

Oxx,0yy, Ozz, and Gxy are the dimensionless Cartesian stress components. Stresses have been

nomTaliz.ed by pcr2, velocities by ¢, and time by b/cL. where p is the mass density, cL is the
longitudinal wave speed and b is a characteristic length in the problem that is being considered.

In Eqn. (1)

Y=cu/cs @

where c; is the shear wave speed.
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In terms of the dimensionless stress quantities p, g, 1, and s the dimensionless second invariant

of Jo becomes
J,= '{ %((p-r)z+3(q2+s2))

)

NUMERICAL SCHEME

In case of isotropic linear elasticity, the function D is zero. In the absence of viscoplasticity, Eqn.
(1) is recognized as a linear homogeneous symmetric hyperbolic system of first order partial
differential equations with constant coefficients. The numerical solution to this system of
equations is described by Clifton (1967). The finite difference equations are based on the method
of integration along bi-characteristics. The difference scheme is an explicit single step method
and the difference scheme is second order accurate. The domain of calculation is divided into a
square mesh.

The interaction of a step pulse with a semi-infinite crack in a body bounded by two parallel
surfaces is modelled as a mixed initial and boundary value problem. The domain of the
calculation is shown in Fig. 1. The specimen thickness is normalized by the semi-thickness of
the specimen, which is assumed to be the characteristic length b in the problem. The crack is
located midway between the two bounding surfaces. The crack tip is located halfway across the
specimen of width 2L, which is taken to be sufficiently large to avoid unwanted reflected waves
during the time of interest. The unit normalized time in the problem corresponds to the time a
longitudinal wave takes to traverse the semi-thickness of the specimen.

A plane square tensile pulse of duration tp, and amplitude Oy is applied to the boundary y=1 .The
tensile pulse is applied by prescribing nodal normal stress values at the boundary y=1. The crack
is located on the plane y=0 and x<0 with x=0,y=0 being the crack tip. The crack is represented

by the two traction free surfaces x< 0, y=0-; and x< 0, y=07.

Crack propagation is simulated by a moving grid scheme. As the crack propagates the entire
mesh moves with the velocity of the crack. The instantaneous crack velocity is denoted by a is
prescribed. Since the crack position is known at every time step, the variables at the end of every
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Fig. 1. Model geometry for computational analysis.
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time step are interpolated to compute the variables at th
Now the computations using the difference method are c
as in the original computational scheme. Usually the
normalized distance and L=1.5 was used. A uniform
calculations. All calculations were

e nodal positions for the n

ce the problem is non-dimen
were carried out for a pulse duration of tL=

1.4. This pulse duratio
a time duration of 1 ps step

utations were carried out on a Cray X-MP.
The dynamic energy rel

ease rate G (Freund, 1986) for a two dimensional body containing a
crack can be written as:

Lim
G= . [(U+T)nx—o'ijnjui_x dar

where U is the stress work density, T is the kinetic energy density,

is the displacement vector. T is @ contour enclosing the crack tip an
the crack-tip contour(see Fig. 2) The energy release rate G was c
time step using a domain integral form; see Li et al. (1986).
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Fig. 2. Crack-tip contour for evaluation of dynamic energy release rate.

RESULTS
Linear Elastic Model

Results for specific examples of stress wave loaded cracks
results are presented in this secti

and comparisons with analytical
on for linear elastic solids.

The crack may move at either a

release rate model, and a constant cra
onset of fracture, is the time when th

We take t=0, to be the time of arrival of th
correspond to the constant energy release r

delay time of 1=0.33. In the case of the ¢
history for the crack is shown as an nsert

e plane wave on the crack plane. Figures 3 a and 3 b
ate model and the constant crack velocity model for a

onstant energy release rate model, the velocity-time

in the plot. The crack remains stationary until time t=t.
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ig. 4 Contours of effective stress at t=1.4; (a) Stationary crack

(b) constant velocity crack growth, t=0.5, a/cr=0.5

puted using a single iteration at each mesh point

yield zones are nearly symmetric even though the loading is non-symmetric. In the case of the
stationary crack (Fig. 4 a) the shapes of the contours are similar to the shape of the plastic zone

under quasi-static loading. Also, it is interesting to note that the effective stress around the

propagating crack (Fig. 4 b) is relatively higher than for the stationary crack. This implies that the
plastic strains accurnulate much more rapidly ahead of a propagating crack tip.
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Fig. 5 Crack opening displacement (COD) as a function of time.

To gain better understanding of critical conditions that prevail near the crack tip, the crack
opening displacement is plotted in Fig. 5. The plot shows that the crack opening displacement
increases with time until the crack initiates and remains nearly constant during the constant
velocity crack propagation.propagates at constant velocity. The crack opening is approximately
the same for all the three cases during propagation. This suggests that a critical crack opening
displacement might be a valid fracture criteria for constant velocity crack growth in elastic-

viscoplastic solids under stress wave loading conditions.
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