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ABSTRACT

A wide scatter of critical crack lengths, critical loads, critical energy
release rates, etc., is well known in brittle fracture. It 1s also recog-
nized that the scatter of such macroparameters is caused by microstructural
fluctuations of material morphology. This is typical for critical phenom-
ena, where microscopical fluctuations produce a macroscopical effect. In
fracture, microstructural fluctuations are reflected most explicitly in the
morphology of fracture surfaces.

Below we consider a probabilistic model of brittle fracture, restricting
ourselves to two-dimensional problems.

The essence of the model is illustrated through the following experiment
(Mull et al., 1987). Fatigue crack propagation followed by crack instabil-
ity has been observed in 25 macroscopically identical specimens made of a
short fiber reinforced composite. Figure | illustrates the ensemble of the
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crack trajectories. Dots on each trajectory indicates the critical crack
tip location, i.e., the transition point from stable to unstable crack pro-
pagation. Although the specimens were (macroscopically) identical, the
crack trajectories were unique for each specimen. More importantly, each
of these crack trajectories should be viewed as a priori possible.

For a given path w, introduce the probability P(/|w) of failure along
w provided the crack has already reached the depth /. Also let P{w}
denote the probability that the crack 'chooses" w. Then, for a given spec—
imen, the probability that the critical crack depth will not exceed [/ can
be written as

P(H) =2 P/ P}, (0
1Y
where (! is the set of all possible crack trajectories. (We assume that

only one crack is formed in each specimen.)

In a continuum-based model, the set ! is innumerable, and (1) is substi-

tuted by
P =/P(I|w) duw (2)

(0

where du(w) 1is an analog of P{w} in (1) and is constructed on the basis
of a statistical analysis of fracture surfaces. Thus the probability meas—
ure du(w) is a characterization of micromechanisms of fracture reflected
in the fracture surface morphology.

The conditional probability P(/|w) is defined as the probability that
energy release due to an infinitesimal crack extension exceeds the required
fracture energy at all points of the path w beyond the depth /. The
probability has been evaluated (Chudnovsky and Kunin, 1987) as

b 1,(x)/2 = Ymin . dx
P(/|w) = exp {- exp | - e — b . (3)
!
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Here J,(x) is the energy releise rate for a crack formed along w to the
depth x; the random vy field of specific fracture energy is assumed
statistically homogeneous with pointwise Weibull distribution and a corre-
lation distance r, ¥Ypin» Yo, and « being the parameters of the Weibull
distribution; B 1is the width of the specimen.

After a choice of the measure du(w) is made, evaluation of the integral
in (2) can be done in differen! ways: by Monte-Carlo method, stationary
phase method, reduction to differential equations, etc. Following (Chud-
novsky and Kunin, 1987) ve restrict ourselves to a "diffusion"
approximation, i.e., we assune that crack trajectories have independent
increments. The <corresponding probabilistic measure is known as Wiener
measure. In this case, evaluition of (2) can be reduced to solving of a
diffusion type equation (Chudnovsky and Kunin, 1987; Gelfand, et al., 1956;
Beran, 1968; Chudnovsky, et al., 1987). A "crack diffusion coefficient"
appears in this equation as an inalog of the conventional diffusion coeffi-
cient. It reflects the tendenty of crack trajectories to deviate from the
maximum energy release path.
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Fig. 2

Figure 2 illustrates predicted contours of equal probability density for
the critical crack tip location (the latter are identified as point of
transition from stable to unstable crack growth); the dots indicate the
critical crack tip locations observed in experiment. A good agreement sug~
gests that the model grasps some important features of the phenomenon of
brittle fracture.

The diffusion approximation requires knowledge of the characteristics of
the y-field (Weibull parameters 7Ymin» Yo» ¢« and the correlation distance
r) as well, as the dependency of the diffusion coefficient D on the load-
specimen configuration. Then the model provides: (a) predictive formalism

for probability distributions of critical crack depths, critical loads and

crack arrest depths (the latter in the model's 'stable" version (Chudnov-—

sky, et al., 1987), (b) similarity criteria for small scale testing.
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