A Numerical Study of Crack Arrest in
Elastic—Plastic Materials

SOREN OSTLUND
Department of Strength of Materials and Solid Mechanics, Royal
Institute of Technology, S-100 44 Stockholm, Sweden

ABSTRACT

Numerical simulations of crack arrest in elastic—plastic materials have been performed
by use of the finite element method. A crack propagating dynamically under steady-
state conditions is supposed to suddenly arrest and the transient behaviour at the crack
tip after arrest is studied. The finite element mesh is subjected to loadings given by the
plane strain elasto-dynamic crack tip fields and both rate-dependent and rate-indepen-
dent constitutive models of elastic-plastic materials have been investigated.
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INTRODUCTION

The arrest of rapidly running cracks is an issue of great technical importance. During
the last years extensive research has been directed into the phenomenas around crack
arrest. However, there still does not seem to exist a generally accepted arrest criterium,
especially not if plasticity is included in the analysis. A comprehensive review of the
state of the art can be found in the book by Kanninen and Popelar (1985)

Crack arrest in a rate-dependent plastic material has been studied numerically by
Aboudi and Achenbach (1981, 1983). They considered a crack initially running in an
elastic solid. At a certain time the crack enters a region, where the material properties
gradually change from elastic to elastic-viscoplastic, and the crack finally arrests. The
sdea of a transition zone were also utilized by Xu, Chung and Achenbach (1984) in a
numerical study of crack arrest in an elastic perfectly—plastic material.

In the present work no transition region is introduced and it is assumed that the crack
arrest is an effect of a sudden change in the toughness of the material. A crack initially
propagating dynamically under steady-state conditions is considered. At a time t = 0
the crack tip suddenly stops and the transient behaviour after the arrest is studied.
Results will be presented for the normal stress and strain in front of the crack tip. These
kinds of near tip field values will be of interest in the future research on crack arrest
criteria.
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NUMERICAL FORMULATION

The simulation procedure includes two different formulations of the governing equations.
In the propagation phase it is assumed that a steady-state condition has developed so
that the equations in a convective coordinate system no longer explicitly depend on
time. For the transient phase after crack arrest, however, the time dependence is inclu-
ded in the usual way. For both formulations it is assumed that the loading condition is
plane strain, mode I.

Propagation phase

The governing equations for the growing crack are formulated in a convecting Cartesian
coordinate system ( z;, 72, z3) fixed to the crack tip. The zz-axis coincides with the edge

of the crack and the crack propagates in the z;—direction with constant velocity a. The
steady-state assumption permits the material time derivative to be written as —('1-6%( ).
The equations of motion then becomes

00si _ .,0Pu;
Ooii =yl (1)

where p denotes the mass density, cij the stress tensor and u; the displacement vector.
It is further assumed that the total strain, €ij, is the sum of the elastic strains, €3j¢, and
the plastic strains, €4;p. This gives a general expression for the constitutive relation

gij = Cijxi(ex - €xP) , (2)
where Cjjk) is the elasticity tensor.

A virtual work representation of eq.(1) can be obtained by forming the inner product of
eq.(1) with a virtual displacement 61; and integrating over a volume,

J [5Ejj Cijiexl — piﬂa g?’ gz—: ]dV+ J pd2§uig—1—;—imd5 =
1% S
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where T;j denotes the surface tractions and n; the normal vector of the boundary, S, of
the volume. The finite element equations can be derived from eq.(3) by assuming proper
interpolation functions for the displacement vector u;. In the present work linear inter-
polation functions in a form appropriate for the four-noded isoparametric element were
used. The numerical integration of eq.(3) can be performed by using an iterative method
which basic ideas stems from the wotk of Dean and Hutchinson ( 1980). For steady-state
conditions the stress state and the plastic strains can be obtained by integrating the
incremental form of the stress—strain relation (2) along lines parallell to the negative
zi-axis. Lam and Freund (1985) and Freund, Hutchinson and Lam (1986) describes the
method in a way which is close to the one used in this paper.

Transient phase
The governing equations for the arrested crack are formulated in a fixed Cartesian co-

ordinate system. The virtual work representation of the equations of motion in this case
becomes
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tive. The numerical time integration of the finite

where {°) 18 Hlis materisl e derlvawere performed with a central difference scheme.

element equations derived from eq.(4)

MATERIAL MODELS

Two different kinds of material models have been applied in this study. Both models
adopt the von Mises yield criteria, thus the effective stress, o, can be written as
1/2 5

o= [% SijSij] /2, (%)

i i dinary rate-independent
i otes the stress deviator. The first m_odel is an or g !
‘e‘igse{iec sﬁjer(}gtr:ltly plastic material. The stress—strain relation for this type of gjat{eorrlill
follows the Prandtl-Reuss equations when yielding has occured. In incremen

they can be written as

(6)

855 = m( €ij — Nij Nkl ekl)

when s;jéi; 2 0 and @ = gy. In eq.(6) &; is the strain deviator, oy is the tensile yield
IJ . . 1 .
stress, nij = Sij/ [ Skisk1 , E'is Young's modulus and v is Poisson’s ratio.

i i -] i ic-vi lastic model proposed by
d material model is a non-hardening elastic-viscopla:
gsfzjﬁgo(nl%fi). This model assumes that the plastic strain-rate is of the form

o= 7<[2_—_02}>N3i1 (1)
Y oy 25

i i = 4000.0 s’ and N =
d N are material constants. Throughout this report 7y [
g}(;eirseu’sye?ir.l The notation (¢) should be interpreted as ¢ if ¢ > 0 and 0 if ¢ <O0.

RESULTS

i i i i f 578 rectangular elements
e element mesh used in the calculations consisted o t
’vl;?t% f;nii)tal number of degrees of freedom of 1260. The elements close to the crackdt;g
were all of equal size. Outside the steady-stat; .pla,ftu‘:A lz‘f)ﬁle ahcza?]sggrmnelzghwiir% :ssﬁable
i i i i s 1. oug
save computing time. The mesh is shown in Fig. 1. A ne el
imiti i lity limit of the central difference sc
the limiting factor is the mesh dependent stabi : 1 didenance o
i esh requires a smaller time step and consequently more comp g e.T
rllxofllenseratmthe meqsh boundaries were subjected to prescribed displacements accor(%mg :0
the elasto—dynamic crack tip fields except for a small part of the trailing edge close to
the crack surface where instead stress boundary conditions were applied.
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Fig. 1. Finite element mesh.

Although the elasto—dynamic fields are functions of the crack tip velocity and a change
of velocity takes place at the time of arrest, the calculations presented here were per-
formed with boundary conditions according to the steady-state crack growth. This
avoids the introduction of unnecessary numerical disturbances. The remote stress inten-
sity factor, K1, were choosen so that small-scale yielding could be assumed. This means
that the size of the active plastic zone were kept within ten percent of the vertical size of
the mesh, see i.e. Freund, Hutchinson and Lam (1986).

When the crack tip velocity suddenly changes the second time derivative of the displace-
ments and the crack tip acceleration will become infinite in a way which can be de-
scribed by a Dirac function. By introducing this into the complete virtual work represen-
tation for a convecting coordinate system, and integrating over an infitesimal time inter-
val (-¢, €) an additional initial condition on the transient phase computations is
obtained. In matrix formulation this condition reads

MAa= Alae, (8)

where M denotes the mass matrix, A the correction of nodal velocities, a the nodal
displacements, Aa the jump in crack tip velocity and A is a matrix formed from

J p&uig%: dv. (9)
Vv

This condition was not observed by Ostlund and Gudmundson (1987) in their elastic
transient crack propagation calculativns and this is the main reason why their results,
for cracks which suddenly changes velcity, not are very accurate.

The initial velocity used in the crack arrest simulations was m = 0.4, where m = a/Cy
and C» is the elastic shear wave velocity. The results presented were computed at the
center of the element directly ahead of the crack tip.
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In Fig. 2 and 3, €22 and e90P are plotted as functions of time for the rate-independent
and rate-dependent material model respectively. In Fig. 4, o022 are plotted for both
material models.
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Fig. 2. The strains €22 (above) and egopP (below) as function of time
for the rate-independent material.
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Fig. 3. The strains € (above) and e22P (below) as function of time
for the rate—dependent material.

807



0922 / Oy
1.50 2I50 3.50 4.50

0.50

T T T T T T T T T T T T T T 1
0.02 0.06 0.10 0.14 0.18 0.22 0.26 0.30

t/ (Ki2/(oy2a))

Fig. 4. The stress og2 as function of time for both the rate—dependent
material (above)and the rate-independent material (below).

The calculations were all performed for a time which was short enough to avoid any
interaction with the mesh boundaries. Except for differences in the numerical values due
to the different character of the twe material models, there are some basic differences in
the response to the sudden arrest of the crack. As can be expected the plastic strains are
accumulated during a much shorter time interval for the rate-independent model. After
a short time no change is seen for the elastic—perfectly plastic model while the plastic
strain calculated with the rate-dependent model is increasing during the whole simula-
ted time. It is also interesting to rotice that the increase of plastic strain relative the
steady-state value are considerably larger for the rate-dependent model. Also the nor-
mal stress, ogo, shows a larger rise, relative the steady—state value for the elastic—

viscoplastic model compared to the rate-independent model. However the basic diffe-
rence between the two models are seen when the stresses have reached their maximum.
The stress goe for the rate-independent model then remains more or less constant while
the normal stress for the rate—dependent model slowly relax. The small decrease of the
rate-independent stress shown in Fig. 4 are probably caused by numerical effects.

If a crack propagation condition bised on a critical value of the strain in front of the
crack tip is adopted then it is of inierest to study the rise in strain when crack arrest is
simulated.

CONCLUSIONS
The numerical procedure described above is a promising tool for simulations of crack

arrest in elastic—plastic materials. With some minor extensions it will also be applicable
to general non-steady crack growth.
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The field variables close to the crack tip are relatively free of numerical noise, which not
always is the case for other methods. This can simplify the interpretation of the numer
cal results.

The moving mesh procedure of course has the drawbacks that it is only applicable to
structures with horisontal edges parallell to the crack line and infinite dimensions in the
direction of crack growth, i.e. the infinite strip problem. However, it is possible to imple-
ment the moving mesh formulation only for the elements just around the crack tip and
keep the rest of the mesh stationary.

Despite these drawbacks the procedure is very efficient for basic studies of the fields
close to the crack tip. A major advantage is that the crack tip position always is well
defined. This is not the case for the nodal relaxation technique commonly used today.
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