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ABSTRACT

A new nonlinear line-spring model for elastic-plastic analysis of surface
oracks is proposed by considering the yielding at back surface. The
numerical examples are given and plausible.
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INTRODUCTION

A nonlinear line-spring model for elastic-plastic analysis of surface cracks
based on the D-M model was developed in previous paper (Lu and Jiang, 1983).
1t does not consider the yielding at back surface of crack. However, this
yielding is observed in experiments and has a Considerable effect on the
field intensity and opening displacement of the crack tip. Therefore, A

new model is proposed by incorporating the yielding at back surface shown

in Fig. (2) and (b) in this paper. The nonlinear Constitutive relations of
line-spring can be derived from the improved D-M model Solutions for Single
edge cracked strip by Considering the yielding at back surface, as shown in
Fig. 1(c). To model a surface crack in plate or shell, the distributed
line-springs are then embedded between the two surfaces of a through crack
in plate or shell, as shown in Fig. (d). The solution of the through
cracked plate is based on Reissner plate theorye. Finally the numerical
examples are given.

THE IMPROVED D-M MODEL SOLUTIONS FOR SINGLE EDGE CRACKED
STRIPS

The D-M model of a single edge cracked strip can be improved by incorpora—
ting the yielding at back surface, as shown in Fige 1(c). It can be con—
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sidered as a double edge cracked strip with yielding stresses acting on the
crack surfaces. For this plaie strain double edge cracked strip, the
equilibrium equations in terms of the displacements are

pas + 25 +@-0dp= o (1a
A A (1

where {5:.7__(_’_;_';_)_ and Y is poisson's ratio.
Solving egs. (1) with the help of the Fourier transform and Satisfying the

boundary conditions, we get a singular integral equation for the dislocation
density function ¢ (y)

| (&5 +Ruv]¢wdt=—ZHy)

where 4’(?)=%K(%8),"’l=“/(f*ﬁ) s /ﬂ’é‘(f*")/(ﬁ—/) , is modulus of elastic-—

ity in shear.

Lé(oapu(a, £) (2)

21p _ a1p,— 1 -
Let t=——(¥+1), y=—2-13(y+1) as t and y €(0, a;p) and =5 (n-8gp)T+(hazy) ],

Y=%[ (h—azp)§'+(h+a.2p)] as t and y & (app,h),we can write equgtion (2) as

+/

|7 e} + s efpee))de -5 ) 2
where _ _{4’.(?)’= $(2E(%+1) j

{‘f”*)}’ &@) | P (R-ap)E+R+%p))

ol On t+ o}[("%p)"irgj—q; H(g—z'k/fif—l)
{1)( )} L’B* 5 [~32p ~(1-34p)F ] + 05 }

Oy=N/n, Op=6M/n2, Y ,=ai/h, ;1p=a1p/h, 2p=azp/h, H(t)=1 as t>0 and
H(t)=0 as t < 0, and (O7g is the yielding stress.

1

The_solution of equation (3) is in form £¢(%)} =(1-%2)7% {G(i)i , and
{G(t)} can be numerically obtained from the Lobatta—chebyshev method (Theoc-
aris and Ioakimidis, 1977). The stress intensity factors of the crack tips
at y=a4p and ayp are

K. (%p)=—m jl_;_aj‘%(’) =7 [o,-,gm(y,r,;,r )+, (5, 5p)~ G5 8 (51,5, 3) (8)a
Ky () =y [T G ()= 7 [, (37, 5) 935, G 50)— 0B .3 (v

where gMI(;’F’k‘f)B—G’"U)J;iEI’ B 35,(37 /3’1,:)=—673(')J-15_5,f .

2Mz(3lp, §:P)= E[xn("/ VEI (f-?if ¥ 352 (37, Ef)= EPB - ﬁz (,_3‘) )
?Sl (3-1, k'rf, 3:,:)= - &S{I)ﬁr-;lf s 351 (;I/ 37,’, 3:f)= ﬁ;(‘/)J%[(I—klf) .

The fact that the stresses a: the crack tips are finite requires KI(a1p)=O

526

and KI(a.zp)-O. We have
Onr a(3p. 5p) + 08 Jm1 (Sip 3o ) = T s (31, 5p, 31p) = © (5)a

O G (3, )+ 08 Joa (51p, 3sp) = G Gz B Fp, 54p)= @ (5)v
The plastic zone siges §1p and sz can be obtained from solving egqs.(5) if

the crack size 54 is given.

The crack tip opening displacement is
Q to + o
Q:zu(o,a.)=sz<f’lf)dt = —Zﬂlffa. ¢HFIME = —za,,,L PEIHEG )A€ (6)

ap yad _
where ¥4 -23-}-1-) -1 and @) =(1-) 5L [0, Guntt) 05 GiotD)~ % Gis «].

THE NONLINEAR CONSTITUTIVE RELATIONS OF LINE-SPRINGS

¥or the strain energy U of the double edge cracked strip shown in Fig.1(c),

wo have u ‘;'P';r)
U= U°*Ju,“‘u=u'*j (3% dsp+35, d3p) ("N

€0,1)
where U, is the strain energy of the strip without the crack.

Using the relation between the potential energy release rate Gy and the
stress intensity factor Kr, Eq.(7) becomes

(VEXVA +_£Q_£’_”2 jl:zp: ?‘r)[ K;( Qp )d ;f = K;(‘Ep)dir]
=Lh* ﬁ%‘_"zf[(cm&,,, + 0598~ de) Spt(Tndr 0583.‘0;&)7/—3,,)]# (8)

¥rom relations 5;.,=—_é§—é,’—; and 9}’267520% , the constitutive relations of
1&/‘5_ 2(/-3”)( [d"";dnsJ

%} an} ;
- Os
93/‘ E opm , BB || 0% ldxs ) (9

where O(M-:-Io'[g/\, ZM’E'P +3~ 3:“2(1_3;f)1dt (A’M-—'M, B)
0()~s=f: [2‘;\1 35; 3':( +3),3’g,(/—?;r)] dt (A=m,8)

line-springs are derived

[ntroducing the dimensionless dislocation densities Sg and §J’ , Eq.(9)
becomes

Om(_E Yam, ] (" )], o o Yan, dup ][ s .
{o_é}_z(l-ﬂ‘)[yb”/ o Liba/“_’)jH(x t)dt + Os Yom, Yoo || 465 (10)
yMM/ XMBJ_ dMM ; o(,,.' =)
- Yor o Yoo Ame , duJ
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When 255=0 in Eq.(10), we get the Constitutwe relations without the yielding

at back surface, and when aq=) in Eq.(10), we obtain the Constitutive
relations without the crack aixd with the yielding zone. These Constitutive
relations are all necessary t> elastic-plastic analysis of surface crack.

When the ligament yielding appear, the Constitutive relation in incremental
form of line-spring is given is
a{o} - [Sepla {af (1)

e [541=[51- [ ZEBE 18122 |st32) . (o] ~{%)

347 %&ii E d“H QI"B _' Ea/ +I 2—-/(‘;)
—— d = —_—— 2 = { =J _a x 7)o
{30"] % > [Se] 2(1-2%) [o(nul dag] ’ {5} Q’/g ) [9;’ (‘T)j H(Z,E)dg

and 4’(0;, Oz, 3’,) is the generzlized yielding function of the edge cracked
strip. ¢(0n,d5,3,) =0 is the generalized yield surface, and it is obtained
from eqs. (5) with 3q1p=32p=3p -

To simplify the numerical calculations, the yield surface is linearized.
Therefore, [Sep] is Constant, and the constitutive relation (11) can be in-

tegrated into the following form

(o) =1d,+ [Sel(18)-18],) (12)

where {0’}0 and { q}o are the generalized stress and displacement at which
the ligament starts to yield.

THE BEHAVIOR EQUATIONS OF REISSNER PLATE WITH A THROUGH

CRACK
For Reissner plate theory, we take the basic equations as follows
vh =0 (13)a
w4 =0 (13),
1
vy ;7#’= 0 (13)¢

where W is deflection, F stress function,l[fadditional function and d:%/—a .

Having solved eqs.(13) for W, F and ¥ , the stress resultants and couples
and the midplane deformations of the plate can be expressed as

ag*  a¥ &' Y » =
Fx*s%*sg , b= . G=w+ivw,
_9F _ 2'F __2F
No= EYE ’ ")7— oX* ’ Ny" XY ’

Mxx=‘-p(_:-g§ "’y%;&), 1'7)7=D(%§L +)/.§€(ﬁ)) an=M5X=ﬁ-—2‘£2(g-§£+%€(3)’
_ (-¥»)D =
Q= 5P (17 35), =1222(67 %) .

22

in which D=Eh3/12(1-V2).
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 he solution of egs.(13) by Fourier transform in the half plane y>O is

given as

Foug)=m f.: (At huy) € e 74 (18)
won) = g [T (At Ast) e e ds (14)y
Yog)= o [7 AseP e N ds (18)

1
where X= I+d—~'—,_s,, .

~ Bubstituting egs.(14) into the boundary Conditions, a system of Cauchy-type

singular integral equations can be obtained

)l =7, -
R (" B 4 = oty — o (15)a
o e (15)
gR (" 5/(5)( ——= 5 7)) dE = 0 R)—- 5% b
%r{‘«i;f_l BJ(*)(t—x ""f'["t)) t = Oyc%)-Cp
©o - - - - o |
where t=t/Cqp, Eq/c1p, 4,(x,%)= 12—+-y L(1+2a252(1-)’))sin(t—x)sds R y=’1+§:—_,.
-_ L R
and ot—-ﬁ—lo’-q—f,

NUMERICAL RESULTS AND CONCLUSIONS

The Combination of eqs.(16) and the Constitutive relations 9f_1ine-springs
results in the governing equations for the dislocation densities

[ (e ) [esolFe)) - 5 o)
b .'g,(;,e)]-fr’f-%[:,' ;][ﬁ':i’ H5-E) 17715
[: ,’ ﬁ.l;,z)]' }El% [:’/ _:L][ Sep JH(i-U
{ j={ [ol %}("[j::zﬂjf::} “{frf:}) 7] > 1%
I P T A I oy

where {k[z/{)]_-_—

1z <1x7

ml af&

As the plastic zone sizes a1p, a.zp, C1p and 02p are given, the eqs.(16) is

a el f cauc 1, singular integral equations and it can be.numerical—
]ysﬁiv‘:dowith Gzzssb—rcp;ebysﬁgv quadrature (Theocaris and Ioakimidis, 1977) .
Because the plastic zone sizes are unknown, it is necessary to use four
additional relationships, that is eqs.(5) for a,  and a,,, the third equat-
ion for cpp obtained from making ;=0 in eqs.(5) Bnd elimfnation ayps and the

_&i’_“'ﬁ * solutions are obtained from
fourth one cqp=c +-qu[ & ] . Then, the solu
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iterative program. with these solutions, the line-spring generalized forces
{o} can be obtained from eq.(10) or eq.(12), and thus the crack tip opening
displacement & can be calculated from eq.(6).

The numerical results of surfsce cracked plate under tension loadings is
given in Fig 2-5 for a/h=0.2, 0.4, 0.6 and 0.8. The curves in these figures
give the variations of the dimensionless crack tip opening displacement JS¢

E St
=%——‘—(,_w)o; x with tensior loading On/g; for a/c=0.2, 0.4, 0.6 and 0.8.

It can be found that the numerical results are plausible.
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