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ABSTRACT

This paper presents a simple and effective technique for the evaluation of
fracture mechanics parameters. Finite elements are applied as a reliable

tool for singularity problem solution. Because of the limitations on appli-
cation on material and geometrical nonlinearity special elements are avo-
ided. It is the rapid mesh refinement technique that enables accurate mode-
11ing of a cracked body response on the applied Toad. A1l classical elements
are admissible. Simplex isoparameter triangular elements are applied here
due to simplicity and universality in their formulation. A simple procedure,
based on displacement field, is given for the evaluation of stress intensity
factor and J-integral. The procedure requires linear variation of displace-
ments inside an element. An analysis of the errors appearing during the
solution process is given, enabling the optimized choice of the error influ-
encing parameters. A final result is a possibility to use simple, commerci-
ally available programme and simplex elements for an accurate evaluation of
fracture mechanics parameters with relatively small number of degrees of
freedom and without limitation on material nature.
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INTRODUCTION

Fracture mechanics parameters can be evaluated if the displacement or stress
field in a certain domain containing a crack is known. The calculation of
the displacement and stress field around crack is well-known problem in the
theory of elasticity. The singularity problems are described through partial
differential equations of 2m-th order and appropriate boundary conditions
(Whiteman and Akin, 1979). The attention is restricted here on the second
order (m=1) equations and prescribed displacements as a boundary condition.
Therefore, the displacement formulation of finite elements is used and C°
convergency requirements are essential,
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Analytical solutions of the aforementioned problem are restricted on a sim-
ple shapes of problem domain and a certain class of the prescribed displa-
cements. In any other case numerical methods are more efficient. Today the
finite element method is the most widely used for obtaining the solution of
many problems of the theory of elasticity. However, an early attempt of fi-
nite element anplication on the evaluation of the stress intensity factors
was unsatisfactory, although large number of elements were used (Chan and
co-workers, 1970, used classical elements and uniform mesh refinemnet). As
a consequence special elements were developed (Barsoum, 1976 and 1977). The
special elements are efficient in many fracture mechanics problems, but they
suffer from two main disadvantages:

- an additional effort is needed for their formulation

- real constitutive relations and/or large displacement formulation is

not directly appnlicable.

On the other hand it was found that the efficiency of the classical elements
applied on the singularity problems can be much improved using technique
named ranid mesh refinement (Fried, 1971a, Fried and Yang, 1972). The appli-
cation of this technique on the stress factor intensity evaluation has given
excellent results (Johnson, 1981, used constant and linear strain triangular
elements and obtained errors both in the strain energy and stress intensity
factor less than 1% with only 133 degrees of freedom. The problem solved

was a double edge cracked tension plate). However, one should consider the
magnitude of all errors abpearing during the solution process. Therefore,
besides the discretization error, the computational error should be also
discussed.

DISCRETIZATION AND COMPUTATIONAL ERRORS

If an interpolation function inside an element includes a complete set of
a polynomial of the degree p, the discretization error of the strain energy
for the 2m-th order nroblems can be expressed as (Fried and Yang, 1672)

O(hz(p+1'm)), where h is the diameter of an element in the uniform mesh.
For the fixed value of m (m=1 for the second order problems), the discreti-
zation error can be influenced by » and h, the order and the size of an
element. In this pamer n will be chosen due to a procedure for J-integral
evaluation, getting the fixed value p=1. For the problem containing a sin-
gularity, whose solution is not a nolynomial. uniform mesh of the elements
with nolynomial interpolation functions produces the largest discretization
error in the elements around a sinqularity. Therefore, the only way to redu-
ce the discretization error is to reduce the size of the elements around
singularity. The princinle of this reduction is the same discretization
error in all elements (Fried and Yana, 1972).

The special type of the singularity is considered now - a crack in a body
under the given load. The displacement field around a crack tin is given in
the form u=r®, where r is the radial distance from a crack tip and o is the
parameter characterizing singularity. If the diameter of the smallest ele-
ment in the nonuniform mesh is denoted by h, the diameters of elements in

a radial direction are hi=“ih’ where a; is the coefficient determined from

the principle of the same discretization error in all elements:

ai=‘i(p_a+1/2)/a )
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It was proved (Fried and Yang, 1972) that the full rate of coqvergeace is
regained in this way. Consequently, the discretization error is 0(hc) for
m=1, p=1 and a=1/2 (Linear elastic fracture mechanics).

The computational error mainly appears as a consequence of.the rouqd—off
nrocesses in the computer memory. The effect of numerical integration and
curved toundaries does not exist here because numerical integration 1s exact
and there are no curved boundaries in the chosen example (for details of
this effect see Ciarlet and Raviart, 1972). Therefore, we concentrate here
on the round-off error, given as (Fried, 1371b):

X1 - c.107S.c_(K (2)
IXT a0

where s is a number of decimals in the computer word, Qn(K) is a_spectral
condition number of the global stiffness matrix and c 1s a numerical cons-
tant. Using the relation for spectral condition number in the case of a non-
uniform mesh (Fried, 1972), the round-off error can be exnressed as:

h
BN o o 1075 RN (3)
il 1 Ain

where N is a number of elements, hmax and hmin are the maximum and minimum
values for the diameters, respectively, and c, js a numerical constant.

It is usefull to discuss now the influence of the narameters on the magn1tut
de of the errors. It is clear that the larger number of elements reduces the
discretization error, the reduction being larger for the higher order ele-
ments (the larger p). However, the larger p causes the larger diameter r§t1g
(see eqn 1), what is, together with the larger number.of e]gments, uqdes1ra -
le from the computational error point of view. It is 1mpo§s1b1e to find the
"universally" best combination of the narameters 1nf1ueng1ng thg magn1tud¢
of errors (o, N, h__ /h_. , s). The criteria for satisfying choice 1s (Friec
1972): max’ ‘min

1e73.C (K) < 1 (4)

EVALUATION OF STRESS INTENSITY FACTORS AND J-INTEGRAL

Knowing the displacement or the stress field in a domain containing a crack
there are few possibilities for the stress intensity factor and J-integral
evaluation. It is optional to choose between the displacement or the stress
field. Since the finite element formulation here is based on the displace-
ments, it is more accurate to use the displacement field for any further
calculation. A standard technique for the stress intensity factor evaluatior
is an extrapolation of Ki=Ky(r) curve to obtain the value for Ky at r=0. The
curve is obtained from the nodes along the radial direction 6=m, using the
relation for the plane problem:

- L/ (5)
ST =

where G is the shear modulus, v is a displacement in y direction and k is a
parameter characterizing the type of a problem: k=§-4v for the plane strain
and k=(3-v)/(1+v) for the nlane stress, v being Poisson’s Ratio.
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The starting point for J-integral evaluation is its definition as a path in- RESULTS
denendent integral on the contour r:
The double edge cracked tension plate under plane strain condition was tested
ds) (6) (Fig. 1). Due to the symmetry only a quarter of the plate was considered. The
basic finite element mesh is presented at Fig. 2.

U4
J 8x

J = ;(Ndy-o1jn

1J51j’ o' and €43 are components
of the stress and strain tensors, nj is an outward normal on T and gﬂi is a * ?q:1? { T
gradient of displacements.

where W is the strain energy given by w=%o

E=1.

It is essential to transform the relation (6) into the form dependent on the v=0.3
displacement field only. Such a transformation involves constitutive relati-
ons which are taken here as for a homogeneous linear isotronic body, as well y
as strain-disnlacement relationshin, which is taken here as for the small X
displacement gradients. For the nlane nroblem the final relation for J-inte- X o
gral is the function of disnlacement aradients only (the relation which is 0.5
not restricted on the nlane problem can be find in Sedmak and co-workers,
1981):

unit thickness

_G dV_3U, BV 3Uy 3U 3V, 3U 3V ) 4 A, UBU_, BUIV , 3V3V
=21 [k G- R0 G R G Gy e B Wi Woaxy (7)

where k1 and k2 are constants characterizing the tyoe of th2 problem: ‘ ‘ J ‘ *
; 2(1-v 21 .
- for the nlane strain kw-—éjgc) k2_1-2v (3)

k2=— (9)

Fig. 1. The double edge cracked plate

- for the plane stress k1=

The displacement gradients can be calculated directly from the known disnla- E
cement field. Under the assumption of a Tinear variation of displacements,
what is satistied in the simnlex finite elements, it is possible to trans-
form the integral relation (7) into a summ suitable for the further calcula-
tion:

o N-1
Iz B (P FXexg) (10)

5N

where FY and FX are the expressions multiplying dy and dx in the relation g
(7), respectively, being constants inside an element with a linear variation
of displacements, Yk and Xgg are the differencies of the coordinates of po- h11h2=1:4

ints K and J along the integration path and N is a number of elements along
the integration nath. This technique was tested (see Berkovié, 1980) in the
case of a centrally cracked nlate using eight different paths. The obtained
values for J-integral varied only 1% from the mean value.

In the case of linear elastic oroblem J-integral reduces to the strain ener-

gy release rate and can be directly related with the stress intensity factor. ! paN
In the case of the plane pnroblem the relation between them is: h, hy
< = EE1‘J (11) Fig. 2. The basic finite element mesh
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Five meshes were tested here, all of them obtained by adding one new "layer"
of elements in the lower half of the domain. KI was calculated by the extra-
polation technique and via J-integral. Results are given in Table 1.

TABLE 1 Results of U, KI and J

Mesh I II Il IV v

Number of
elements N 2

44 60 84 108

Strain AGE

energy U 2.593 2.712 2.780 2.825 2.842

K; (extra- .

p&]ation) 1.27 138 1.45 1.50 1.52
J 1.92 2.18 2.30 2.36 2.40

KI(via J) 1.45 1..55 1.59 1.61 1.62

The exact value for the strain energy is given for a quarter of the plate
(Babuska and Szabo, 1982) as U=0.73422. Hellen has reported KI=1.669 using
virtual crack extension method (Hellen, 1973).

The largest computational error belongs to the fifth mesh. According to eqn
(3), for N=108 and hmax/hmin=45'5’ using single precision (s=7.2), the com-

putational error is:

Isdl _ . .1077-2.45.5.108 ~ 5-107
] 1

DISCUSSION

It is clear that relatively small number of elements give an accurate predic-
tion for both the strain energy and stress intensity factor evaluated via
J-integral. The extrapolation technique was not so successfull. It is also
clear that the single precision is sufficient for this typoe of a problem.

If the more complicated problems should be solved, with much larger number
of elements and ratio hmax/hmin’ the double precision is to be used. This

situation can be avoided using higher order elements, but they require the
more complicate and less accurate relations for J-integral evaluation.

CONCLUSIONS

Rapid mesh refinement is very simple and effective technique for the evalu-
ation of fracture mechanics parameters. The formulation itself is not Timited
regarding material properties - it is therefore possible to treat linear elas-
tic, nonlinear elastic and elasto-plastic behaviour. However the care is to
be taken with J-integral evaluation for elasto-plastic behaviour, since its
path independency is doubtfull in that case. Numerical experiments indicate
large error of J-integral along the paths close to the crack tip, but the
average value is in good agreement with predicted values (Shiratori and Miy-
oshi, 1980). Many authors have tried to reformulate J-integral in order to
regain the path independency (Hellen, 1980). It is also suggested to simula-
te the elasto-plastic behaviour by an equivalent nonlinear elastic behaviour.
This is satisfactory nrovided that no energy release rate is attached to
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J-integral (Knott, 1980).

The possibility of using simple, standard programme with the_c1ass1ca1 ele-
ments is a great benefit of this technique. Commercially available programme:
is used here (Hinton and Owen, 1977), modified only to accept the simplex t¥
angular isoparametric elements. In the case of nonlinear elastic or elasto-
-plastic behaviour an excellent extension is the other book of the same aut-
hors (Hinton and Owen, 1980).
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