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APSTRACT

In this paper a modified Nugdale model for a finite internally
cracked vlate is discussed, in which the cohesive force is taken
of variable distributions along plastic zones ahead of crack
tips. Using the method of superposition and the results from

our previous works (Chen, 1981, 1983), we find the proposed
problem can be easily solved,.
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INTRODUCTICN
An early investigator (Dugdale, 1960) proposed an elastic-
plastic model for an infinite internally cracked plate. In the

model, he supposed that the cohesive force G¢ is constant along
the plactic zone near the crack tip and the SIF value is equal

to zero at the fictitious crack tip. Then, using these conditions,

we can obtain the CCD value and the plastic zone size.

In this paver the Dugdale model is extended to the following
cases: (a) the cracked plate is finite, (b) the cohesive force
is taken as fe=06¢, Gc=G6¢|x|/a and 6, =G¢(x/2)* in the interval
cg| x| ¢ca, respectively, where 6t is the yielding stress. Using
the results of previous works (Chen, 1983; Harrop, 1978), all
the derivations and calculations mentioned below can be easily
completed,
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In problem J , using the conformal mapping
ANALYSIS

-1
Consider a square plate vith a central crack of length 2c subjected Z=w(3)=a(T+% )/2 (2)
to the uniform stress S on the upper and lower sides of the
outer contour (Fig. 1). The cohesive force acting along the line we can express the stress and displacement components as
cclxlca is 6 =Gef(x), where 6¢ is the yielding stress and f(x) i
is a siven function. Clearly, this problem can be ceparated into i ()‘“.,.6'”=4_Re @(z)
three boundary value froblemi,[ namely, I , I and II as shown in i
Fig. 1. The problems and for the finite cracked rlate can . R ,
begeasily solljved by a proposed method (Chen, 19f3). Consequently, 0-;3—6;x+2'6;3=2[u)(t)@(3)/w(';)J-EP(';‘)]
now we concentrate our attention upon the problem I for &n i

infinite plate. If these three crack problems are solved, the | - _ _ 7 7 _
applied stress S can be found as follows ’ i 26’(11-4'!(/')—39"?(;) W@ P(T// wCS) lP(f) (4)

(3

. | w?;/f;)/ (e(('s)') ant(ig)‘//("(f;)_)/ar? ’;,wo a?alyt):ic(:al §'unctions, d (D)=
= (K - (1 ! w(% 14 =y w'(T), x=(3=v)/(1+V v is the

S (Kix K',m) f/K'II ] Poisson's ratio and G is the shear modulus of :elasticity.
where Ki,1 , K,g and K, g are the SIF value at the crack tip for

the problems [ , T dnd Ip respectively (Fig. 1). z In this paper, the following three cases: (41)62 =06t , c<lxl<a,
i (B) 6c =6¢Ixi/a, c<Ixi<a, (C) 6 = 6¢ (x/a)® , c<i1xi<a , are
y s 1 i discussed. After using the previous results (Harrop, 1978) and
J / ! completing some manipulations, we get
L I K P T — 7 §f ¥ % ¥ § % !
2b I ‘ P3Im= 2L+ Ll (2-C)£(5)+ (Z+C) o (9D} for case (A)  (5a)
R x) BT 1, 2=
oy Txa) =] = —6:X | ‘P(?)“W(I-?HW(J.(Y)-ﬂ(ﬂ) for case (B) (5b)
I‘c.t:"- X ——2a = | ()=-22 (34 L5), @520 _ Ly, (7 cD)f(5)+(2+ IH®}
. 4 2m\T T Ty v/ Grar ((Z- /Al :
| H for case (C) (5c)
i i f [ | T & ¥ ¥ ¥ ¥ ¥ )
Y(s)= gp(;)___L_rrf"'" @’Cs) for cases (A),(B),(C) (6)
B [_ fr——
P?fa;g‘:t;‘—:;;\ ******* ] K.=2\I'TT/a, (‘P/C') for cases (A),(B),(C) (7)
Y Infinite . '; P
lt:'-[ Plate ;E" ]I[ where
. [-‘_, 0= Arc cos(c/a)

. Emw ' [z 0 H _
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2a

$(5)=Ln(5-exp(i®)-Ln(s- eXp(-io)

$,(5)=Ln (S +exXp(i®) —-Ln (S+exp(-im))
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NUMERICAL RESULTS
Fig. 1. A scheme showing how the original problem .
is separated into three boundary value Finally, after some rather complicated calculations, in the case
problems | , I and Il . of a square cracked plate we can express the obtained numerical

results as
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2508 %) )
a

?‘5__&=3¢4(—§—' =) (12)

where a,b,c and r are the dimensions of the cracked plate as
shown in Fig. 1, @ = Arc cos(c/a), 2v(c, @ is the COD value.
Owing to the limited space, only the numerical results for cases
(A) and (R) are shown in Fig. 2 and 3, respectively.

Obviously, the curves shown in Fig. 2(c) and 2(d) are similar to
those obtained by the previous investizators (Dugdale, 1960;
Nisitani, 1978). In Fig. 2(d), a relation between the applied
stress S and the plastic zone size (a-c) can be easily found.

In addition, we also found that, in this case of Dugdale mocel
instability in finite cracked plate can not occur. Furthermore,
from Fig. 3(d) we see that there exists a maximum value in the
3/6¢ versus a/b relation. That is to say, instability of plastic
zone propagation may occur in some circumstances.
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Fig. 2. Numerical results for the case (A)(@_=0g¢.
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(d) f4(c/b,a/b) values.

Numerical results for the case (B)G, =0g¢|x|/a.
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