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ABSTRACT

Macroscopic residual stresses in fracture toughness test specimens can erroneously
affect the fracture toughness measurement. However, most current fracture tough-
ness test methods do not measure nor correct for residual stress effects. A
theory is presented which leads to a test method for short rod fracture toughness
specimens in which the effects of macroscopic residual stresses are measured and
corrected from the data. The theory is applied to fracture toughness measure-
ments of 18 different groups of tungsten carbide specimens. In some cases, the
correction for residual stress effects is more than 20 percent. Large reductions
iE data scatter as compared to uncorrected data indicate the validity of the
theory.
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INTRODUCTION

Residual stresses in materials can be divided into two categories - microscopic
and macroscopic. Microscopic residual stresses fluctuate from maximum com-
pression to maximum tension over distances which are of the same order as the
microstructure of the material.  Thus, although microscopic residual stresses
may well affect the fracture toughness, the toughness measured on such a specimen
can be considered as a material property inasmuch as the residual stresses are a
homogeneous characteristic of the material from a macroscopic fracture toughness
viewpoint.

Macroscopic residual stresses, on the other hand, can affect the measurement of
fracture toughness by causing an entire crack front of macroscopic dimensions to
be in a state of tension or compression before the application of any external
load. This paper is concerned with the effects of macroscopic residual stresses
on fracture toughness measurements.
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It has long been known that macroscopic residual stresses can have a profound
effect on fracture. Shot peening retards the formation of surface cracks in
metals, for example (Elber, 1974), and cracks in glass often slowly enlarge
because of a combination of residual stress and stress corrosion cracking. Elber
(1974), Bucci (1980) and Underwood and Throop (1980) have noted strong residual
stress effects on crack initiation and fatigue crack propagation in metals.

Since fracture toughness is considered to be a material property, and since
macroscopic residual stress in a specimen definitely is not a material property,
any apparent toughness variation which results from macroscopic residual stresses
must be considered as erroneous.

Standard fracture toughness test methods do not address the problem of residual
stresses.  This paper considers the problem of macroscopic residual stresses in
the short rod fracture toughness test specimen suggested by Barker (1977). It
is shown that residual stress effects in these specimens can be detected in the
toughness test, and that a relatively simple theory leads to a data analysis pro-
cedure which corrects the toughness measurement for residual stress effects.

THEORY

In previous derivations of the equations for measuring the fracture toughness from
linear elastic fracture mechanics (LEFM) principles, such as in Irwin and Kies'
classic paper of 1954, it has been tacitly assumed that there are no macroscopic
residual stresses in the test specimen. However, a relatively simple generaliza-
tion of the derivation suggests a test method and a data analysis technique which
provide correct fracture toughness measurements in spite of the presence of modest
residual macroscopic stresses in the test specimen. The derivation is presented
below with reference to the short rod specimen configuration, which is easily
tested in the manner suggested by the theoretical development. Previous short

rod derivations have been given by Barker and Leslie (1977) and Barker (1979).
Residual stress fields in which the periphery of the specimen is in longitudinal
tension or Tongitudinal compression affect the short rod fracture toughness
measurements the most. It is these which are treated in the following theory.

The short rod test configuration is illustrated in Fig. la. The specimen is
tested by slowly increasing the load, F, on the specimen until a crack initiates
at the point of the "V".  The crack growth in the short rod specimen tends to be
initially stable because of the constant widening of the crack front (dimension b
in Fig. la) as the crack propagates. However, the Toad goes through a smooth
maximum when the crack reaches approximately the location shown in Fig. la, and
thereafter the crack-advancing load decreases with further crack growth.

The equation for the plane-strain critical stress intensity factor, KIcSRl is

derived using the familiar compliance approach. Plasticity effects in the speci-
men are assumed negligible. It is assumed that the energy required to advance a
steady-state crack a small distance, 2a (Fig. 1b, 1c), is

b ra, (1)

1 In keeping with the ASTM definition of the symbol Kic as the plane-strain
critical stress intensity factor as measured by applying the method of
ASTM E 399 (1978), the symbol KicSsR is used in this paper to denote the

plane-strain critical stress intensity factor as measured by the short rod
specimen.
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Fig. 1. Schematics of the short rod specimen.

[ i k lengths a and
where b is the average width of the crack front between crac
atpaa, and where GI is a characteristic material property that denotes the energy
’ c

W

uired per unit area swept out by the crack front. Most of the energy, W,
Eﬁges froﬁ the work done on the specimen during the course of the test. tE1g. 2
represents a test record of the load applied to the specimen, E, ;er?uihe e
opening of the mouth of the specimen, x. From Q to A, the mouth o Lhe he "y
specimen is being flexed open before any crqck 1q1t1at1on at the poin o ana
At A, where the curve first deviates from linearity, the crack starts growing,
continues to grow as the curve proceeds through BCD.

The total work done on the specimen at any point in the test is simply IEdg from

x = 0 out to the current mouth opening.  However, part of the total wor 1Sth
recoverable in an elastic release, as from B to E, or C to F: Since b1§
formation of the crack is an irreversible process, 1t is only the 1rreco¥era 5
part of the work done on the specimen which can contr1bute to the work o grac .
formation, AW, in Equation 1. Assume that the specimen has been 1o§ded a ?n%he s
and that at point B, the crack length is a. Asgume also that a reiease o e
load from point B would produce the linear gn]oad1ng pa?h BE. If 1t_werihn2 b
residual stresses, our assumption of negligible plasticity would require tha o
crack would tend to close completely upon re1e§sg of the external 1oad, 1.e:i
release path would lead directly toward the origin, 0. However, }f ﬁ ten51iﬁen
longitudinal residual stress field is present near the per1pher¥ of the ip$C 5
the mouth will remain partly open even after the external load is complevg y .
removed, as indicated in Fig. 3. Hence, the release path may lead to point
rather than 0.2

—=TENSION=—

_»TENSION «—

o ®axg X

i i i f longitudinal
i a short Fig. 3. Illustration o i
flo- 2 igzengéEdgzplacement residual stresses which affect
test record the fracture toughness measure-
’ ment.

2 A compressive longitudinal residual stress field near the per}phﬁr{iwou;d
cause the mouth to tend to over-close, 1.@.,‘po1qts E and 0 g.
would lie to the left of the origin. This is discussed later.
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Now let the test be continued from B to C, resulting in an additinnal crack
growth Aa, and an additional crack surface area b aa (Fig. 1b). If a release of
the load from point C would produce the release path CF, it is clear that the
additional irrecoverable work done on the specimen in going from B to C is

represented by the cross-hatched area of Fig. 2.  This work must contribute to AW.

One can obtain an analytical expression for the cross-hatched area by approxi-
mating it by the trapezoid EB'C'F, where the height of the trapezoid, F, is the
average load applied to the specimen as the test record advances from B to C.
If the distance B'C' is called ax, and the distance EF is called 8 then the

cross-hatched area is equal to z?(Ax+Axo), and we can write

MW=k (AX+AXO) +AW', (2)

where AW' is the contribution to AW from sources other than the irrecoverable work
done on the specimen during the test.

The only source of energy for aW' is the internal strain energy which is already
in the specimen because of its residusl macroscopic stresses. For the purposes
of this derivation, it is assumed that W' is negligibly small compared to

5?(Ax+Ax0), and that AW' can therefore be dropped from Equation 2.  The applica-

tion of the results of this derivation must therefore be restricted tq_chose cases
for which the above assumption is true.  Thus, we can re-write Equation 2 as

AW = 5F ax(14p), (3)

where p = AXO/AX. The parameter p can be viewed as a measure of the magnitude
and direction of the residual stress effect. If ax, = 0, the two unloading load-

displacement paths point toward the same spot on the zero-load axis, indicating no
longitudinal residual stress effect exists between crack lengths a and atha. A
positive value of p suggests tensile longitudinal residual stresses near the

periphery of the specimen. A negative value of p occurs when aX is negative,

i.e., when the elastic unloading paths, if extended linearly to the zero-load axis,
would cross before they got there, as indicated in Fig. 4c. Equation 3 is valid
for either positive or negative p vilues.

In a paper by Barker (1979), the same operational definition of p was used to
denote the plasticity exhibited by a short rod specimen during a fracture tough-
ness test. In that derivation, it was assumed that there were no macroscopic
residual stresses in the specimen. The present derivation, on the other hand,
assumes the presence of residual stresses, but no plasticity, and arrives at the
same operational definition of p. Thus, in a more general sense, p might be
thought of as a measure of the degree to which LEFM assumptions are violaicd in a
particular test. In this analysis, however, we shall continue to regard p as
a measure of the magnitude of residual stress effects in the fracture toughness
measurement.

Once Equation 3 is obtained, the balance of the derivation follows the same steps
as those of Barker (1979), and arrives at

_ 3/2
KICSR - A Fc(1+P)/B B} (4)

0/

in which A is the dimensionless specimen calibration constant defined by Harker
(1979), FC is the load as the crack passes through the critical crack length, a4

and (1+p) is used as the small-p approximation of the expression [(1ep)/(1=p)]?
which results from the derivation.

The evaluation of p is simple from an experimentq] vigwpoint (Fig. 2). It
requires no calibration of the specimen mouth opening d1sp1acement transducer,
because the calibration constant cancels out on taking the ratio Axo/AX- The two

unloading-reloading cycles which determine p can also be used to define thg )
point on the load-displacement path at which the crack passed throggh the critical
crack length, a.- The slope of each elastic unloading path determines the crack

i i i f the specimen geo-
length through the compliance versus crack.length calibration o
metry. The load-displacement point at which the crack length was a. was found by

interpolation between the known crack 1engths where the unloading-reloading cycles
were initiated. The load at this point is Fc'

EXPERIMENTS

Short rod fracture toughness tests were done on 18 different groups of tungsten
carbide specimens of various grades and from several manufacturers. .The tests
were done on a service basis, and thus the details of specimen composition, grain
size. and hardness are largely unknown. The cobalt content range among the

different grades was at least as large as 6 percent to 16 percent. A11 specimens

were 12.7 mm diameter by 19.05 mm long.  They were tested on the Fractometer I
fracture toughness test machine (Barker, 1978), and plots of load versus specimen
mouth opening displacement were made for each test, including at least two
unloading-reloading cycles for evaluation of p-factors.

The load-displacement plots gave p-factors which ranged in value from -0.29 to
+0.20. Fig. 4a shows one of the cases in which p was zero, i:e., the residual
macroscopic stresses were negligible in the longitudinal direction, and the test
conformed well to LEFM principles.  Fig. 4b shows a test record in wh1ch p was
positive, while Fig. 4c shows a case in which it was negative. Notice that the
test record is flattened in the positive p case, and that it is more peaked in
the negative p case. Fig. 4d shows a case in which p was in1t1§11y abqut
zero, but then went negative, undoubtedly due to a residual stress field wh1ch
varied along the length of the short rod specimen. The changing p-va{ue is
reflected in the skewed shape of the Toad-displacement test record, which tends
to become peaked rather late in the test where p is quite negative.

In the data analysis, the fracture toughness was obtained first gccording to LEFM
principles, i.e., assuming no residual stresses in the test specimen. The tough-
ness value so obtained was given the symbol KQSR‘ The measured residual stress

effect was then taken into account by calculating

Kiesr = (1#P) Kgsp (5)

The standard deviations of the KQSR'S were 3.0 percent or larger in 9 of the 18

groups of specimens. The data for these groups are presented in Table !, where
and Prax represent the minimum and maximum values of p observed within the

group. Notice that the standard deviations of the KIcSR values are always sub-
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Fig. 4. Four load-displacement test records from the test series.

stantially less than the standard deviations of the KQSR'S, and that 6 of the 9
KIcSR standard deviations are less than 3.0 percent.

The corresponding data for the 9 remaining groups of specimens with KQSR standard

deviations of less than 3:0 percent are shown in Table II. In these cases, five
of the KIcSR standard deviations are smaller, two are unchanged, and two are

larger than the corresponding K standard deviations.

QSR
TABLE I Tungsten Carbide Tou
ghness TABLE IT More T i
Toct FeeuTer re Tungsten Carbide
. Toughness Test Results
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DISCUSSION

There can be little doubt that the parameter p is a measure of the effects qf
residual stresses in the tungsten carbide specimens of this study. It consti-
tutes a direct measure of the residual bending of the specimen halves which
develops as the crack advances through the specimen.  The bending cannot result
from plastic deformation of the specimen during the test for two reasons: (1) the
only non-elastic zone in these specimens during the test is at the crack tip, where
it is much too small to account for the observed effect; and (2) most of the p
values were negative, which signifies residual bending in the opposite direction
from that to be expected from plastic deformation. In tests of certain steel
specimens, relatively large negative p values have correlated well with indepen-
dent observations of curvature of the specimen halves after the test.

Since p is a measure of residual stress effects, one would expect a successful
theory to predict no residual stress correction to the measured toughness when-
ever p = 0. This is the case in the theory of this paper, since setting p = 0
in Equation 4 leads to the completely LEFM equation for K; cp (Barker, 1979).
ept for their

Furthermore, if several specimens are essentially identical exc
values because of

residual stresses, one would expect some scatter in their KQSR
residual stress differences, but much less scatter in the KICSR

corrections for residual stress are valid. The data in Table I demonstrate that
this is the case. Finally, in a group of specimens in which some had essentially
no residual stresses and others had varying degrees of residual stress, the theory
should correct the KQSRIS of the specimens with residual stresses to agree with

the Kosp and the latter should

not be changed by the theory in calculating the KICSR value. Again, this was the

case for a number of the specimen groups in Table I. Thus, the experimental data
of Table I provides conclusive evidence of the value of the theory and the data

analysis technique.

values if the

's of the specimens with no residual stress effects,

Table II shows the results of all the groups for which the standard deviations of
the KQSR values were less than 3 percent. In this case, the application of the

residual stress theory resulted in a much smaller improvement in the standard
deviations: 1.7 percent for the KQSR‘S and 1.5 percent for the KIcSRIS' The
smaller reduction in standard deviations is to be expected, however, because some
finite standard deviations due to causes other than residual stresses must be
expected.  When the standard deviations of the KQSR'S are already close to those

to be expected from non-residual stress causes, correcting for the residual stress
effect cannot decrease the standard deviations very much. However, this does

not diminish the validity nor the importance of the corrections for residual
stress effects. The average percent difference between the KQSR and KICSR
in Table II is 7 percent, in spite of only 1.7 percent average standard deviation
of the KQSR values.

One of the assumptions made in the derivation of the residual stress equatiqn for
KICSR was that the residual stresses in the specimen are relatively small, i.e.,
p should be small. No theoretical value for the maximum allowable p has been
determined, however, and the data of the present paper do not appear to define a
precise limiting value for p. At the present time, it may be prudent to regard

the toughness measurement as suspect if |p| > .20 or even [p| > .15. Constrain-
ing |p| to be less than .15 for a test validity requirement should not pose any

great difficulties.

values
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Finally, although the rationale is slightly different between the elastic-nlastic
and the residual stress derivations, the resulting equations and data analysis
procedures for the two cases are identical. In the general case in which the
specimen contains both residual stresses and elastic-plastic effects, it is

easily shown that precisely the same KIcSR equation and data analysis method

simultaneously treats both residual stress and elastic-plastic effects. The frac-

ture toughness test data alone do not supply encugh information to separate the
two effects.

CONCLUSIONS

Although macroscopic residual stresses in fracture toughness test specimens can
erroneously affect fracture toughness measurements, most current test methods
neither detect nor correct for residuil stress effects. However, a relatively
simple theory leads to a data analysis procedure which both measures and corrects
for residual stress effects in short rod fracture toughness specimens. The
application of the measurement technique to 18 groups of tungsten carbide speci-
mens of various grades has indicated the validity of the theory.  Whenever
standard deviations were larger than normal, the application of the theory greatly
reduced the data scatter. The corrections for residual stresses were usually
important even when the uncorrected dita scatter was small. The average residual
stress effect in the experiments of this study was about 7 percent, but the effect
was more than 20 percent in some specimens.

The test and data analysis procedure for treating residual stresses turns out to
be the same as that for handling modest elastic-plastic effects. In fact, the
one method simultaneously treats both effects.  The ability to account for
residual stress and elastic-plastic effects in short rod tests greatly enhances
the value of the short rod method of fracture toughness measurement.
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