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ABSTRACT

The in-plane problem of a cracked elastic body is considered and, using a glo-
bal energetic point of view, the existence of Bui's J-integral (1977) for the cal-
culation of the energy release rate in the dynamic case is proved for general

loading.
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NOTATIONS

In this paper we shall use the following notations :

U = (Ui) displacement vector

U = (ﬁi) velocity

€ = (eij) strain tensor Zaij = Ui,j # Uj,i

o = (cij) stress tensor

W elastic energy density W = 1/2 oij Eij
wel the strain energy of the solid IQde

o specific density

C kinetic energy density C=1/2 pﬁiﬁi

wkin the kinetic energy of the solid IQCdv
A and p Lamé coefficients

c, compressive wave velocity = [(A+2u)/o]]/2
C, transverse wave velocity C,= (]..l/p)l/2
E Young's modulus

v Poisson's ratio
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INTRODUCTION

In a paper devoted to the analysis of stress and strain concentration near
the tips of cracks and notches, Rice ( 1968, a) introduced for homogeneous, but not
necessarily isotropic solids, in two dimensional elastostatics, with infinitesimal
deformations, with the possibility of non-linear stress-strain relations, a path-
independent integral

(1) J=1| (Wn - ij n, Uk,l) ds
r

where I is an oriented curve in the solid, n = (n.) is the outward normal unit
vector on I' . If I'is a closed path not surrounding inhomogeneity nor singularity,
then J=0. In the contrary, J remains constant when [' is deformed without surroun-
ding a new inhomogeneity or new singularity.

That integral is of great importance in fracture mechanics, if I' is chosen
begining on one face of a crack, surrounding the crack tip, and ending on the other
face. Then one has (Rice, 1968,a,b)

(2) J =G

where G is the energy release rate by unit length of crack created in the X direc-
tion (fig. 1).

o

i

Fig. |. Path [ surrounding the crack tip.

These results which have an eisy generalization in three dimensional elasto-
statics must be traced to the works of Eshelby (1956, 1970, 1975), where the inte-
gral value is interpreted as a forte on the defect lying in the path of integrati-
on. Knowles and Sternberg (1972) have shown that these results as well as other
conservation laws follow from an application of Noether's theorem (1918) on inva-
riant variational principles to the principle of minimum potential energy in elas-
tostatics. The interpretation of sach conservation laws from an energetic point of
view was given by Budiansky and Rice (1973). Some applications to stress—intensity
factor calculations problems are given by Freund (1978).

These results valid for elastostatic cannot be easily obtained in elastodyna-—
mics. For example, it is impossible to calculate the energy release rate for a
crack growing in its own plane by means of a line independent integral. It is easy
to show this if, following Atkinson and Eshelby (1968), we consider two paths T
and F2 so that FZ is surrounded by T]. Let us suppose that a wave, coming from out

of T has notreached ', a line integral along '’ will be changed while the same
integral along I', remains unchanged. The line inéegral, whatever it may be, will
vary with the line of integration.

Atkinson and Eshelby (1968), and Freund (1972) (see also Kostrov and Nikitin,
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l970? have then proposed, for the calculation of the energy release rate during the
growing of a crack in elastodynamics, to consider a line integral, but the 1in§ is
shrunk onto the crack tip. For a crack growing in its own plane at a velocity v in
the X, direction, they have shown that ’

(3) G = lim j [(W+C)nl + n.0.0/v ] ds
r-0 ‘r

where ' is an oriented line surrounding the crack tip .
"n a different way, Bui (1977) proposed to calculate the energy release rate

Ey means of a truly path independent integral, with line terms and also surface
erm

(4) J=[{Wn-0. U, -0 0 - pb z §
P T %M, T 2P pUb, v} ds + = ADUjUj,ld"

where.F is a rigiq path surrounding the crack tip and in translation at the same
velocity v and A is the surface surrounded by T.

Bui refered to a conservation law given by Eshelby (1956, 1970) and also by

Fletcher (1976) who applied Noether's theorem (1918 1 iati
om0 ( ) to the elastodynamic variatio-

3 . 9
(5) = {pU, U. |} + {w -0 - =
oe 5 g1t T VT PO l) 8y — Uy ot =0
§Ui (1277) has shown that J=G in the particular case of mode I loading. We prove
ere, by energetic considerations, that the result J=G remains tr f
loading. We prove successively : o S
I- The existence of the J-integral, eq. (4).
2- The path independency property.

3- The identity J=G.
EXISTENCE OF J

In Fhe definition of J, eq. (4), there are two terms, a line integral and a
sgrface integral. The existence of the line integral is quite obvious, since the
fields héve no singularity on T. To know whether the second term exisés we look
at the §1ngulariti?s of tb?/ ields U and U , near the crack tip. The si;gularity
of U . is known being 0O(r ) a long time’ago from the work of Yoffé (1951) who=-
se résults were confirmed in a more general feature more recently by Achenbach and
BaZant (1975). For the singularity of U, the easiest way for its analysis is to
refer to the "transport condition of the singularity" assumption introduced b
Nguyen (1979) which is : " If the crack is growing in the x, direction at theyve—
locity v,for each field f 1in the solid, we have near the crack tip

(6) f=-vf )t (more regular terms) " .

] From (6) we dedgce that U will be an O(r_l/z) term. The second term of the
right member of (4) is then well defined and the existence of J is proved.

PATH INDEPENDENCY PROPERTY

. Let us recall_firgt the expression of the time derivative of an integral on a
rigid domain D moving in the solid with the velocity v.(Germain, 1973)
i
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D
(7) ——-J f dv = J<—— dv + J f v.n, ds
Dt D DBt ap L1

where 0D is the boundary of D, n is the outward unit normal vector of 9D, f and
9f/dt are integrable in D.

Following Bui (1977), let us integrate the relation (5) in a rigid domain D
including neither singularity nor ishomogeneity and moving in the solid at the ve-

locity v in the X, direction. Using (7) we find

D |e 1 . . B
(8) T UjUj’ldv + {Wnl ijnkuj,l 500,00, pUjUj’lvn] }ds =0
D aD

We notice that (8) is a little different from the integral expression of the
conservation law given in Fletcher (1976), because Bui made use of a moving domain
of integration, while Fletcher considered a fixed domain D,. Let us consider now
two curves I'. and T, surrounding the crack tip, enclosing respectively the surfa-

ces A1 and A2 (in tfanslation at the velocity v), fig. 2. Apply the relation (8)

Fig. 2. Domair without singularity.

for the domain D=A -A.. It is possible to do this because A -A incloses no singu-
larity. Separating thé integrals over (A ,I' ) and (A ,['.) we see that the values
of the J-integral, eq. (4), corresponding to the paths Fl, I, are equal. It fol-
lows that J is independent of the path surrounding the crack %ip.

IDENTITY J = G

Bui (1977) has shown that J =G for the particular case of mode I loading, u-
sing a rectangular path for I', the cormers of which are (-a, -n), (a, -n), (a,n),

(a, =-n) fig. 3.
(-a,n) r (a,n)

(-a,-n) (a,-n)

Fig. 3. Rectangular path for mode I loading.
Putting n equal to zero and using the asymptotic expression of the fields in
mode I, he found J as a function of the intensity factors

L=y a u
(9) J = E KI KI
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. . g .
where the stress-intensity factor KI and the kinematic intensity factor K? are

(10) k%= 1in @ee)? g t¥, 0, €
T, 22 , ,
U (r,m, t) - U, (r,-m, t)
an u_ oo u 172 Uy 2\t W,
KI iig ETT:;T (2n/r) >

Bui has shown -that
(12) K = 9&1_:_!% K;
B,(1- 85)

where :

8, =va1 - vz/Cf) s By =vQ - vz/cg) » D=4gp, - (1+3§)2

Freund (1972) has shown that in elastodynamics the energy release rate is

13 =12V _a2y (02
(13) Gmesp— BB D

From §9),.(12) and (13) Bui deduced that the relation J=G remains valid in elasto-
dynémlcs in modg I loading where J is given by (4). Let us prove now that the re-
lation J=G remains true for a more general loading. We shall not use the same meth-
od as that of Bui, but we shall make use of an energetic point of view. Let us de-
note by F th? energy flux per unit time into the crack tip, by v the crack extensi-
on ve}oc1Fy in the solid. The energy release rate is G = F / v. Since there is no
volumic dissipation in an elastic solid, we have

(14) F=p - Dy _-2D
e Dt e Dt wkin

where P, is the external power. If there are no volumic forces, then

(15) P =J 0. nU. ds
e 30 1knk 1
We can rewrite F as follows

(16) F=J0. i -2 Lot §
A Q(w * Pl dv

Using (7) it can be shown (A and 'being defined in (4)) that

(“) (w DU. U. )dV = (W+IOU U )d\] = W W+ —pU
2" "h h U, )n. ds

(18) 0 = 5
) h°h ST
_Q-A 3qQ-T
The equations (16), (17), (18) show that

ds

I
(19) F= [ W+ ¢ _ D 1 o
I*{V( 700,000, + o, n 0.} ds = A(w +500,0,) dv



2192

The domain of integration is row changed from a fixed domain 2, with the boun-
dary 02, to a moving one A, with boundary T .Now let us study the expression F-vJ :

. 3 )
(20) F-vJ = Jr(vahn] # Ohknk)(gz +v§;]) Uh ds

D 1 s .
v JA(W £ SPU U VDUhUh,l) dv
F and Jv are independent of the path I'. From the transport assumption (6)

3

@) (vl 0 62 + AL otr™h

17 %k h

If the path I' is shrunk onto the crack tip, the first term of the right member of
(20) tends to zero, as does the second term. Since the right member of (20) is
independent of I' we have proved that it is zero, so we have :

(22) F=vlJ .

From G=F/v and (22) we see that Bui's definition of the J-integral leads to the i-
dentity J=G which is valid in elastodynamics, in general loading conditions without
volumic forces. The J-integral of Rice (1) valid for the static and quasi-static
cases is re-obtained from (4) by putting U = O (static case) or p = O (neglecting
the inertial forces, quasi-static case). Note also that if in (4) we shrunk the
path onto the crack tip, using (6) we recover the relation (3). This result is in
itself another proof of the relation J=G in elastodynamics.

DISCUSSION

We shall discuss some of the possible applications of Bui's integral. The real
practical interest of the J-integral is in the energy release rate calculation for
dynamic problems solved by the finite element method. We must calculate a surface
integral at each step in time, and for that reason it seems to be a difficulty, but
the precision in the result of the surface integral calculation would be quite good
, since it is not useful to know eactly the fiel?s near the crack tip. The singu-
larity of the term we must integrate is like O(r '), and for that reason, the con-
tribution to the surface integral of a small zone around the crack tip is of order
0(r), and we should not need a lot of small elements.

But Bui's J-integral can also be useful in some analytical problems. For exam
ple, the result we obtain here for cracks can be easily generalised to damaged zo-
nes in the sense of Bui and Ehrlachker (1980), where the J-integral is used to dedu—
ce the dissipation rate of energy during the damaged zone propagation. The damaged
zone is here in fact a destroyed zcme and can be interpreted as a crack with a non
null thickness.

We can give another simple analytical application. We use the J-integral to
show why the energy release rate decreases from a stationary crack to a propagating
crack. Let us recall first some important result. Consider the simple case of an
infinite medium with a half infinite crack. It is now well known ( see Kostrov (19
75), Rose (1976)) that the energy release rate for a crack growing at the velocity
v, for each pure mode of loading, is

(23) G =8v) Gyt #

where g(v) is an universal function decreasing from one to zero when the velocity
increases from zero to the Rayleigh wave velocity, in the case of mode I loading

for example, and G is,

a half infinite crack ( see Rose (1976)).
half infinite crack. The crack starts prop
me t=0. The static energy release rate,
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for the same geometry and loadi
0 . ng, the ener release
rate of a stationary crack. It is worth noting that eq. ’ 5

(23) is strictly proved for

Let us consider a static loading on our
agating with a constant velocity v at ti-
for negative times, is given by

(24) G, = - =
o . (Wnl UkjnjUk,l) ds = Gstat

for any I'y surrounding the crack tip. Let us choose a large path I'y and denote by

I, the translated path from T, with the length vt
surface surrounded by Ty. At a small time t>0, th

the x, direction, by A, the
€ waves generated by the moving

crack tip will not have reached either the path Iy nor the path Py (fig. 4.). Thus

Fig. 4. Waves generated by the moving crack tip.

on 't we have U=0 and we find from (4) with the path Ty

(25) G,= J Wn, - g, D
t ; ( n GJknkUj,l) ds + bt pU.U
t At

As Ty is still a path surroundin

easy to see that the second term of (25) is
In fact, the moving domain At is restricted
xed center at the position of the crack tip
back to a fixed domain of integration A’ by
mothetically in the ratio I/t. In A' we have
Moreover, we have

(26) D j i = -
ot |, pujuj’] dv = {1

U dv .,
J 3,1

g the crack tip at time zero and since the fi-
elds have not yet been changed on Iy the first term of (25) is G ;

: o+ From (6) it is
negative and we have the result G¢<G,.
to a disc of radius C|t and with a fi-
at time t=0. It is possible to come
changing the integration variables ho-
a fixed singularity at the point (v,0).

g} 6 )

énd iF can be inFerprgted as the energy given back to the solid with the help of
inertial forces in spite of the crack tip progression.

CONCLUSION

- w F i
Bui's J 1nteg;a1 in elastodynamics can be a useful technique for the energy
release rate numerical calculation in fracture mechanics, but can also be the sim-

?le means to obtain some interesting analytical results ab
in elastodynamic problems without volumic forces and with

new created boundary surfaces.
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