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ABSTRACT

This paper deals with the relationships between the microcracking and the deformation
of the concrete subjected to the compressive loading. The meanings of the singular
points of the proportional limit, the critical stress and the flow stress on the
deformation curve are discussed. Especially, "the triple epsilon G method" for
measuring the volumetric strain directly was newly developed. These singular points
correspond well to the characteristics of the acoustic emission. A new stress-strain
curve including only the physical constants of the concrete, and the generalized
equations of the Poisson's ratio and the volumetric strain are derived.
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INTRODUCTION

Almost all concrete structures in the civil and architectural engineering are always
subjected to the sustained load in a broad sense, including not only external forces
but also dead loads, and therefore the creep deformation occurs in them. Price

(1951) showed that the long-term strength was only 70 per cent of the short-term
strength. The cause of such a strength reduction is considered to be dependent on
the extension of microcracks in the concrete. The specific strength, so-called, the
creep limit that can permanently sustain the load is called "Permanent strength",
"Critical strength", "True ultimate strength" and so on. The volumetric deformation
of the concrete is valid as the quantitative index to show the inelastic behavior and
the fracture, and depends on the cumulative effect of microcracks to be latent in the
concrete and developed in it in accordance with loading. The structural defects in
the concrete include the spherical air and water voids in the mortar matrix, the
separations of the matrix from the aggregates, the shell cracks in air voids (Kato,
1968), the mortar cracks and the aggregate cracks. Generally, the transverse strain
against the longitudinal strain is apt to receive the effects of the local variation
of the concrete system, and therefore the deformation apparently shows the anisotropy.
The author developed a new procedure to obtain directly the anisotropic volumetric
strain, considering the strain component towards the third axial direction. The flow
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stress was defined for the first time, showing the hazardous stress level near the
ultimate failure. The proportional limit, that is, the another true strength, can
permanently withstand the repeated fatigue loading. This was determined by the
modified Tuckerman's method of difference to avoid the personal error (Kato, 1971,
1972) . These singular points of deformation were observed by the acoustic emission
technique. A new stress-strain equation excepting the experimental assumptions and
constants was derived, being constituted by the physical constants of the concrete
only. Thus, the ultimate resisting moment of the singly reinforced concrete beam
computed by the author's equation is compared with other. The relations of the
stress-Poisson's ratio, and -volumetric strain are formularized.

NEW STRESS-STRAIN EQUATION AND ITS APPLICATION

It stands to reason that the latent structural defects and the internal microcracking
according to loading may be evaluated by the logarithmic decrement. The author made
it clear experimentally to be able to show the relationship between the logarithmic
decrement § and the longitudinal compressive strain €c of the concrete specimen
subjected to the compressive loading generally as follows.

6=K +K (1)
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where Ky and K, = constants.

And also, the relationship between the logarithmic decrement and the tangent modulus
of elasticity Et of the concrete can be expressed as follows.

Et=a+bs (2)
where a and b = constants. The stress-strain relation can be obtained as follows.
€
G=JEtd€
o
3 1
=s1d=3 (ec/ecp)? } Egec (3a)
or 2
3 B
a=3 (1 3 ) B (3b)
where 0 and €c = any stress and strain, respectively, €cp = the strain at the

ultimate strengthOcp, approximately 2100 x 1076, Eg = the secant modulus of elasticity
at the ultimate strength Ocps O = the stress level 0/0cg, and B = the strain level
€c/€cB-

It is remarkably characteristic that Eq. (3a) or Eq. (3b) can be given by the non-
destructive physical constants only because the secant modulus of elasticity Eg
(kgf/cmz) is given by the longitudinal ultrasonic pulse velocity Voo (m/sec) as
follows.

Eg = 0.262Vy, - 932 (ton/cm?) (4)

Desayi and Krishnan (1964) proposed a relatively simple stress-strain equation
including some assumptions. The shape of the descending branch in the case of the
constant strain rate in comparison with the constant stress rate is very rapid
(Swamy, 1970). The shapes of the Kato,s curve and the Desayi and Krishnan's one, as
it were, belong to the cases of the constant strain rate and the constant stress
rate, respectively. Therefore, the computation of the ultimate resisting moment of
the concrete beam subjected to bending lies practically inside the safe zone to the
general structure when the loading type is unexpected. Fig. 1l(a) shows the
generalized stress-strain diagram obtzined by Eq. (3a) or Eq. (3b). Referring to
Fig. 1(a), an example of the singly reinforced concrete section is computed by these
equations in Table 1 on the basis of the data assumed in the same table. In the
calculations of the area between the curve and the strain axis, and the moment of
this area about the stress axis as shown in Table 1, Desayi and Krishnan's equation
requires the logarithm and the arctangent. On the contrary, the author's equation
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only requires the polynomial and then is very easy to be computable.

NEW STRESS-POISSON'S RATIO EQUATION

The generalized Stress-Poisson's ratio equation made from the point of the
stat}stlca; view within the strength range of 150 to 600 kgf/cm? gained from the 113
specimens 1s given by Egs (4a) and (4b) and shown in Fig. 1(b).

V = P1(a) = 0.155422 + 0.118320a + 0.096744a2 + 0.086538¢3 (0< 2 <0.8) (4a)

Y

10
Pa(0) = 0.20710 } i v (@ - 0.8)M( 1.0 - g )l0-m (0.82a<1.0)  (4b)
m=0 -

where'v = the Poisson's ratio at any stress level, a = the stress level, Vpn = the
experimental values given in Table 2, m = 0, 1, 2, +¢e+., 10, and P, (a) and P (o)
= the functions of a. L 2

NEW STRESS-VOLUMETRIC STRAIN EQUATION

The v?lumetric strain €y on the assumption of the isotrpy on the basis of the
elastic theory is expressed by Egq. (5).

Ey = €c - 2€q (5)
where €~ = the longitudinal compressive strain and €p = the transverse tensile
strain.
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Fig. 1. Stress-strain and -Poisson's ratio curves
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TABLE 1 Calculation of Singly Reinforced Concrete

; i sh '
Equations Desayd & Kr;s daaiie Kato's curve
curve
og = (7/8)0cR gcp =0.0021
Data €g = 0.003 €g = 0.003
€g = 0.00133 €g = 0.00133
{ €CB 0.00177 (0.0021)
Area under stress-strain curve
€
= J 0 de O.BOOUCBEE 0.7070c3€f
o
Moment of the area
3 €
5 = J 0 €c de 0.4580c5€f2 0.4230CB€f2
[0}
b o
B Height of neutral axis = x 0.692d 0.693d
Total compression = C 0.5540cpbd 0.4900¢cgbd
Lever arm = 2 0.7044 0.7214
Ultimate resisting moment = Mg 0.3920¢pbd? 0.3530cpbd?
Ultimate balanced steel ratio =p | 0.5540cg/Ogy 0.4900cp / Ogy

d = Effective depth

b = Width of section

Ogy = Yielding stress of steel

€5 = Steel strain at Og

€cp = Strain at the ultimate strength

Notations¥** of concrete
Of = Stress at the failure of concrete
€f = Maximum strain at O¢
€c = Any strain at any stress O
E = Constant = 20cp/ €cB
Ag = Area of reinforcement
*g=©pe/{ 1+ (ec/ecp)?} ¥

ﬁ——b——%
1\ C
%
o ¢
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TABLE 2 Relationship Between m, & and Vp

m a Vm
0 0.80 0.232
1 0.82 0.236
2 0.84 0.243
3 0.86 0.254
4 0.88 0.271
5 0.90 0.300
© 0.92 0.342
7 0.94 0.430
8 0.96 0.615
9 0.98 0.825
10 1.00 1.000

The critical stress in which Eq. (5) satisfies Eq. (6) is only an approximate value
of the concrete as the composite material.

dey /do = 0 (6)

Thus, the volumetric strain €y from the orthotropic viewpoint can be given by
Eq. (7), called "the triple epsilon G method" being more practical than the
procedure to use the dilatometer (Spooner, 1973).

€y = €c - €71 - €pp = 3€g (7)
where €c = the longitudinal compressive strain along the y-axis, €p] and €72 = the
transverse tensile strains along the x-axis and the z-axis, respectively, and €g =
the reading of the strain indicator in connecting the three sheets of strain gages
in the series and assuming the whole as the one active gage of the Wheatstone bridge
method.
This method can measure the average transverse strain and the separate strains, by
using the strain selector (Kato, 1976).
The critical stress level is given as the function of the strength Ocp (150 to 600
kgf/cmz) as shown in Eq. (8)

Ocr/Ocp = 0.722 + 0.287 x 10™30cp (8)

And also, the critical volumetric strain €y, cg at the critical stress is given by
Eq. (9).

€y,cr = 453 + 0.670cB (x10-%) (9)

The average critical volumetric strain is approximately 700 X 1076, That the
volumetric strain is zero, namely €y = O means that the material is theoretically
incompressible, that is , fluid. This stress named the flow stress Opfp is the very
important singular point of deformation warning the approach of the decisive ultimate
strength Ocp and is given by Eq. (10).

Opr, /Ocg = 0.904 + 0.123 x 10-30cB (10)

The average flow stress level is approximately 0.95, and therefore the ultimate
failure may be forecast at earlier as much as 5 per cent stress level than the
ultimate strength.

The general volumetric strain curve observed from the point of the statistical view
can be expressed from Eqs (3), (4) and (7), by using the average transverse strain
in place of the two transverse strains in Eq. (7), as follows.

ey = €cp £(@) {1 - 2P(a)} = ecpV(a) (11)
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where V(a) = f(a) {1 - 2P(a)}.

The author named V(o) "the unit volumetric strain function", and the curve of V(o)
is shown in Fig. 1l(a).

It is natural that the concrete itself does not expand above the critical stress
level but its expansion results from the apparent volumetric change including the
internal interstices accompanied by the occurence and the development of the
microcracks, what is called, the structural loosening as shown in Fig. 1l(a). And
also, Fig. l(a) shows that the slow crack growth, the crack growth of transition
and the rapid crack growth can be defined by the stress ranges below the critical
stress, between the critical stress and the flow stress and above the flow stress,
respectively, by the acoustic emission observation (Kato, 1977).

CONCLUSION

The microcracks occur and develop in the concrete subjected to loading in addition
to the latent cracks and it stands to reason that the inelasticity on the dynamical
behavior results from those microcracks. The apparent upper limit of the linearity
corresponds to the proportional limit, which is the true strength for the repeated
fatigue. The critical stress to give the minimum volume on the volumetric strain
curve corresponds to the true strength for the sustained load. The flow stress on
this curve is the very valid singular point to forecast the ultimate failure.
Especially, a new and handy measuring technique using the wire strain gages for the
volumetric strain was developed. The characteristics of the RMS waves and the
counter curve of the acoustic emission correspond well to these singular points.

A new stress-strain curve including only the physical constants of the concrete
derived from evaluating the quantity of the internal structural defects by the
logarithmic decrement was proposed, and the ultimate resisting moment and so on of
the singly reinforced concrete beam subjected to bending were calculated and
compared with other. The author's equation consists of the physical properties of
concrete itself, is easy to be computable, and keeps the safety against the
unexpected loading. The curves of the Poisson's ratio and the volumetric strain
were shown for the first time.
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