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ABSTRACT

A formulation of the elastic-perfectly plastic analysis of part-through surface
cracks in plate or shell structures is presented which is based on the Rice line-
spring model. By using a simple elastic plate or shallow shell theory embodying
the Kirchhoff hypothesis, the 1line-spring model is reduced to the numerical solution
of a pair of coupled singular integral equations. In the linear elastic regime,
stress intensity factor distributions for axial surface cracks in moderately thin-
walled pressurized cylinders (R/t=10) are found to be five to twelve per cent
greater than those obtained from more refined boundary integral equation solutions.
For higher oressure levels, the inferred elastic-plastic distribution of crack
front deformation, as parameterized by J, is consistent with a strong tendency for
<table ductile tearing and tunneling; commencing at the deepest penetration of the
surface crack.
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INTRODUCTION

Although considerable progress has been made in the development of computational
techniques for problems in linear elastic and elastic-plastic fracture mechanics,
it is fair to say that the computational costs associated with detailed three-
dimensional finite element or boundary integral formulations of many crack con-
figurations encountered in engineering practice render these problems economically
intractable. Of course, in the case of linear elasticity, stress intensity
solutions can be readily normalized and catalogued so that one can easily justify
the expenditure of a fairly large amount of effort in obtaining accurate solutions
to certain generic problems such as the surface flaw in a plate or cylindrical
shell, (Raju and Newman, 1979) (Heliot, Labbens and Pellisier-Tanon, 1979). On
the other hand, similarly detailed elastic-plastic analyses would require ex-
cessive commitments of resources in order to obtain a reasonable parametric study
of flaw and structure geometry and material hardening behaviors.
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It is the purpose of this paper to present some further results in the continuing
development of an approximate tool for the analysis of part-through surface cracks
in plates and shells, namely the line-spring model introduced by Rice and Levy
(1972) and further developed by Levy and Rice (1972), Rice (1972), and more
recently by Parks (1980). The essential computational economy afforded by the
line-spring model is that these crack configurations can be reduced to formula-
tions in shell or plate theory, rather than in three-dimensional continua.

Before proceeding with the current development, it is worthwhile recalling some
of the history of the line-spring model. At the time of its introduction in 1972,
there was considerable disagreement in the literature as to stress intensity
calibrations for surface cracks in plates. It is likely, however, that this un-
certainty contributed to the general lack of further development of the line-
spring model as a potentially useful tool for approximate engineering of such
cracks. Recently, Parks (1980) re-examined the model and found very good agree-
ment, of order two to five percent difference in stress intensity factor distri-
bution along a semi-elliptical surface crack front in a plate subject to far-
field tension, as compared with the very detailed three-dimensional finite element
solutions of Raju and Newman (1979), vhich are representative of a growing com-
putational consensus regarding this problem. Furthermore, Parks (1980) extended
some of the concepts presented by Rice (1972) in the development of inelastic
constitutive behavior of the line-spring, and was able to obtain approximate
evaluations of the evolution of the intensity of crack tip deformation along the
surface crack in the elastic-plastic regime for the case when the bulk of the
plate deformed elastically, and all irelastic response could be lumped into the
line-spring itself. The intensity of the crack front deformation was parameter-
ized in terms of a variation of a local crack front J variation, but it could
just as well have been given in terms of a variation of 6t’ the crack tip opening
displacement.

In the present work, we extend the 1ire-spring model to axial surface cracks in
cylindrical shells, using the simple shallow shell theory presented by Copley

and Sanders (1969), which retains the Kirchoff hypothesis, to represent bulk be-
havior of the shell. It is noted that in the case of through cracks, the use of
such classical plate or shallow shell theories leads to certain discrepancies in
the singular asymptotic fields at the ends of the through cracks. These dif-
ficulties can be obviated by the use «f higher order plate and shell theories,
such as Reissner's, which admit the pessibility of transverse shear, e.g., Bergez
and Radenkovic (1973). Recently Krenk (1978) has examined the effects of such
formulations on through-crack bending and membrane stress intensity factors in
cylinders. Although at a later time we shall investigate the consequences of
higher order shallow shell theories or Tine-spring results, we may expect that the
differences may be small, especially for surface cracks whose total length is sub-
stantially greater than shell thickness. For similarly long through-cracks in
shells, the differences in crack face opening and relative rotation are slight ex-
cept in the regions close to the ends of the through-crack. In the line-spring
formulation, the regions near the end of the model through-crack correspond to the
intersection of the part-through surfice crack and the shell free surface, where
in the 1imit, the line-spring model becomes inapplicable. On the other hand, sig-
nificant differences may be expected vwhen comparisons are made between line-spring
solutions based on a first-order shallow shell theory and those which would be ob-
tained from a line-spring formulation which was embedded in a more general finite
element or finite difference shell theory, especially when the projected surface
crack length is of the same order as @ typical shell radius of curvature, or shell
thickness.
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FORMULATION

We present the formulation of the line-spring model of an axial sufface crack in a
cylinder in two stages. In the first part, we introduce the behay1or of the

shell structure of mean radius R and thickness t and containing a

symmetrical part-through surface crack of total length 2c. In the second part

we couple the line-spring model to the structural model.

First, introduce a local cartesian reference frame at Fhe center of the grack,
with coordinate x along the cylindrical generator which contains the Q1s-
continuity, coordinate z is positive outwards, and (x, y, z) form a r1gh57
handed system. Let the depth, a, of the inter1or surface grack vary according
to a=a(x) for |x|<c. The thin shallow shell is then idealized as a two-
dimensional continuum, and the part-through surface crack is accordingly
idealized as a one-dimensional discontinuity in the shell of length 2c.
of arbitrarily large R/t, namely a flat plate, is indicated schematically in

Fig. 1.
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Fig. 1 Schematic illustration of basic features of the Tine-spring model, after
Rice (1972)

In contrast to the through crack case, the discontinuity cut is not free of mem-
brane force and bending moment because of the presence of the remaining ligament
of size t-a(x). Let the local membrane force Nyy and bendina moment Myy per unit
length transmitted across the discontinuity be denoted N(x) and M(x), respective-
ly. Furthermore, introduce the fields which represent the jump in shell kine-
matical quantities which are work-conjugate to N and M. The first of these

is 8(x), the discontinuity in shell midsurface dispiacement normal to the p]gne
of the surface crack: &(x) = [u,(x,0)]. The second, 8(x), is the jump in mid-
surface rotation, and, in vie of the adopted Kirchhoff condition

6(x) = [w, (x,0)], where w is the outward displacement of the shell and the
comma indidates partial differentiation. In each case, the square brackets de-
note the discontinuity across the cut for the function indicated; for example,

i
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= i = With these introductions, and the combination of W and ¢ into the dimension-
[uy(x,O)] B uy(x’ y=0') - uy(x, y=0} (m less complex function y=¢+iW, the field equations of shallow shell theory for
the residual problem are:
We have introduced four functions, M, N, 6 and §, and now must introduce con-
nections between them. The first set of connections comes from consideration of % 4'x2 =0 (1)
the elastic shell structure. We will follow the formulation of Copley and b= ST Wy
Sanders (1969), based on a complex function representation of the shell behavior. . : s
Introduce the dimensionless shell parameter X given by with following boundary conditions on the cut |X| < 1.
- - (12)
A= (L75(1-v9)) c/(Rt) (2)
= 13
where v is the Poisson's ratio. The case of x»0 can be internreted as the “’YY(XsO) + vw,XX(X,O) M(X)/Mo (13)
flat plate limit of shallow shell theory as R - . Introduce dimensionless
coordinates ¢,XY(X,0) i (14)
(X,Y,Z) = (x/c, y/c, z/c). (3)
Wyyyy(X,0) + (2-9) Hyyyy(X,0) =0 (15)
Let a dimensionless normal displacement W (positive outwards) be given by
1/2 Equation (15) is the effective Kirchhoff shear condition. We may zate Enat,_iﬁt
2y = 2 % the uncracked solution had contained a uniform value of M = M_, then the rig
Et™ w = poRe™ (1201~ ) w (4) hand side of equation (13) would have been replaced by vy (M(X)-M_)/My.

in terms of a reference pressure p,, and let the membrane stress resultants be . form representation of
given in terms of a dimensionless ~Airy function ¢ by Copley and Sanders (1969) were able to use a Fourier transfor p

the solution to equations (11-15) to reduce the problem to two coupled singular
integral equations in two dimensionless real density functions f(x) and g(x) de-

Nex = PoResyys My = PoRex ey = “PoReaxy- (Sa=s) fined on |x| < c. Straightforward algebraic manipulation of their equations
-1/2 leads to the relationships between the functions f and & and g and 6 as the
If a reference moment resultant is introduced as My = pRt (12(1-v2)) , the dislocation densities
remaining physical resultants are: 12
=1 R
Mxx M0 (w,XX + vw,YY) (6) de poRea (16)
o T dX 7 8
Et
Myy = My (N,YY + vw,xx) (7) > Re
_ds _ 0 1
I Sl an
Mxy = (1-v) MoWaxy (8)
. where a = 12(1—v2). We can directly substitute egns. (16,17) plus the boundary
e = (MO/c) (vzw),x (9) conditions into eq. (43) of Copley and Sanders (1969) to obtain
a2 (1
Q, = (My/c) (7°W), (10) .
Y ° ! pR - N(X) = EE' % {-ta 112 H1(X—X')ue(X‘) + HZ(X-X')ud(X')}dX' (18a)
where @2 is the two-dimensional Laplacian operator in the dimensionless co- -1
ordinates (X,Y). Note that the sign convention for (6-10) is the negative of that
often used. 1
(0 M(X) = 3% { ot (X=X ) (X)) + aV/2H (X=X )u (X") 2dX! (18b)
A solution of the uncracked shell under internal pressure p s given by ¢ ) - aC 3 9 4 $

p = constant and W = constant. The complete solution for the cracked strucéére -1
is obtained by superposing this homogeneous solution and that of a residual
problem in which the loads which are applied to the surfaces of the cut are the
actual loads transmitted by the line-springs minus the loads of the homogeneous
solution, with the stresses of this residual problem decaying to zero far from
the cut.

where the integrals are taken in Cauchy principal value sense and the kernels
Hi(X-X') are given in eq. (44) of Copley and Sanders (1969).
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Equations (18a,b) represent the behavior of the shell, and constitute one of the
couplings noted above. The second coupling comes from the line-spring and re-

lates the local forces (N,M) to the local displacement discontinuities (s,8)
through stiffness coefficients Sij as

N(X)

511(X)6(X) + S]Z(X)e(X) (19a)

M(X) = 521(X)5(X) + SZZ(X)S(X) (19b)

where the Tocal stiffnesses S.. depend on local relative crack depth a(X)/t.

The rationale for the choice 'J of the Tocal stiffnesses S,. is motivated in
terms of the additional "cracked" compliances P, caused 'Jan edge crack of depth
a in a long plane strain strip of width t sub}%ct to combined tension and bend-
ing, as in Fig. 1(c). The local line-spring stiffness matrix S.. is taken as the
inverse of the "additional compliance" matrix P... For further details, see
Parks (1980) or Rice (1972).

We may note that §(#1) = 8(+1) = 0 with consequent closure conditions

(20a,b)
-1 -1

Furthermore, we can use the boundary conditions on § and the definition of Mg to
obtain

1
(

S0 = - | HOC-Xug (X ax (21)
a

where H is the Heaviside step function of its argument, with an identical
relation derivable on replacing & with 6. Equation (21) and its corresponding
expression in 6 can be inserted into eqs. (19a,b), and the resulting ex-
pressions for N and M can then be inserted into egs. (18a,b). The final

result, together with the closure egs. (20a,b) is a system of coupled singular
integral equations of the second kind, which can be readily solved numerically
using the procedures developed by Erdogan and Gupta (1972).

In the range of loadings for which the bulk of the structure remains elastic,
eqs. (18a,b) continue to hold, but if loads are sufficiently large, inelastic
response of the line-spring can be accommodated through an incremental form of
egs. (19a,b), with S.. replaced by tangent stiffnesses as discussed by Parks

(1980). In such casdd, incremental forms of equations (18a,b) and (20a,b) are
solved.

In the elastic regime, the solution for the dislocation densities yield the dis-
placement discontinuities from integrals of the form of eq. (21), and the crack
tractions are recovered from the line-spring constitutive eqs. (19a,b).
Finally, the stress intensity factor at a given location X is taken to be that
which would obtain in a long single edge notched (SEN) specimen of width t and
crack length a(X) subjected to an axial force and bending moment per unit thick-
ness e?ual to N(X) and M(X), respectively. In the elastic-plastic regime,

Parks (1980) noted that the plastic part of a crack tip opening increment, ét .
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could be related to the p]as?ic parts of the djsp]aﬁgmﬁqﬁedlzgggggZuggytlz—SEN
cremgnts thrqugh b kingmat1§3 Eani:g?ha;gin}E%eis;iy of crack tip dgformation
igi?émigei“53922522523n§;°g ?oca] J_ v§1ue alog? Ehe ggzck]:£ng,p§it122 e d
3aTuie]aggi%a;eipégsgag,pt;E:ciel?S%gia; E?gl;¥c éréck t;yZﬁp?Zig%,oﬁgzrtggzi1e
flow stress of the material ops and a pggeg?:zgegy m whi

= sP. Thus the local J

L]p1ast1'c MIy°t

: (22)

3 = KB B+ magst
and an essentially equivalent description, in terms of crack tip opening dis-
placement would be
2 P (23)
dt = .6 KI/E°0 *+ 8

. K ti
where the first term on the right hand side of eq. (23) represents the crac ip

opening displacement in small scale yielding.

RESULTS

We first compare the stress intensity factor distribgtion for_1ntern§1]g;ess#;2
of an axial interior surface crack in a cy]1n§er qf 1nner.rad1us R1 = eiration
crack shape is semi-elliptical, as indicated in Fig. 2, with deepe t pegtr S
a and of aspect ratio a/c = 1/3. More detailed results for_th1s geoms iﬁ-
given by Heliot, Labbens, and Pe]lisier-Tanon'(1979). Norma11zed stres

tensity factors are given in terms of a function H(¢) given by

K E(k) -1/4
H(o) = —lﬁfz—}———— (sin2¢ + a%cos ¢/c2)

5, (ra) /2

Fig. 2  Schematic illustration of cemi-elliptical surface crack

2 2,2
iptic i he second kind, k“=1-a7/c"s 0,
is the complete elliptic integral of t! C , s
?Ze;erggtzeaie stresgpequa1 to the ??qp Str?Sj ?5 Eh?y}gggr_r?d1gicinihzt1
i i oints on the ellipse (X/cC =
;ozrg12?§2 ]O%aﬁlng¢pranges from 0 at the free surface to /2 at the deepest

penetration, a convention opposite to that used by Heliot, Labbens, and
Pellisier-Tanon (1979).
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Fig. 3 shows the Tine-spring and boundary integral calculations for a/t = .25

and .8. The line-spring K; results are a few percent greater, but the maximum
differences are roughly twelve percent. This level of agreement seems satis-
factory in view of the simple shell theory used. Indeed this shell is not all
that thin, (t/Rj = .1) and the error inherent in the use of such a shell theory
can be expected to be of order t/R. If the reference membrane stress og used in
the line-spring shell calculations had been taken as related to the pressure p
through a mean R/t value instead of through the Lame solution, then both of the
dotted line curves in Fig. 2 would be lowered by approximately five percent,
resulting in somewhat better agreement for the deep crack and somewhat less agree-
ment for the shallow crack. As in the plate results of Parks (1980), the line-
spring model somewhat unexpectedly seems to capture the sense of the Ky variation

near the free surface even though the basic premises of the model are not ob-
tained.

25F  m/=0 ]

a/c=1/3

—— HELIOT, LABBENS &

51 PELLISIER—TANON (1979) |
’ ---- LINE- SPRING
o 1 1 1 1
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28/

Fig. 3  Comparison of the variation of normalized stress-intensity factor for a

pressurized cylinder containing an interior surface crack

Fig. 4 shows the effect of surface crack len
tribution for a semi-elliptical internal crack of maximum relative depth a/t=.25.

Here og is a reference hoop stress and for conservatism should probably be taken
as the inner radius hoop stress of the Lamé solution.

gth on stress intensity factor dis-

E§ch of the Tine-spring solutions shown in Fig. 3 and 4 required approximately
six (6) seconds of computer time on a Digital VAX computer. It hardly needs to

be stated that such a combination of accuracy and economy makes the model uniquely
promising for further development and application.

Fig. 5 shows the elastic-plastic concentration of deformation along the crack
front for an axial semi-elliptical interior surface crack of maximum relative
depth a/t=.5 with a/c = 1/3 in a pressurized cylinder with R./t = 10. As can be
seen, the plasticity concentrates crack front deformation nedr the deepest pene-
tration of the surface crack for more than near the intersection with the vessel
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J(sa) were available, graphs such as Fig. 5 would permit, by cross plotting, a
inferred variation of crack growth, pa(e).
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