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ABSTRACT:

In this paper an efficient finite element method, which accounts for the translating
singularities near the tip of a dynamically propagating crack, is presented. Two
aspects of analyses of dynamic fracture, namely, (Z)determination of dynamic
stress-intensity factors from given crack velocity history, and (ZZ)determi-
nation of crack-velocity history (and arrest) from given dynamic-fracture-tough-
ness versus crack-velocity data are considered. Results are presented and dis—
cussed for wedge-loaded rectangular, as well as tapered, double-centilever beam
specimens.
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INTRODUCTION

A number of analytical and experimental investigations, into dynamic propagation
and arrest of cracks in structural metals, have been conducted in recent years
due, in part, to the important technical problems in asessing the structural in-
tegrity of flawed ship structures and of nuclear pressure vessels, and the need

to develop criteria for crack arrest in these situations. Analytical solutions
exist, for the most part, for boundary-value problems in linear elastodynamics for
cracks in unbounded media. The problem of finite bodies, wherein the interaction
of stress-waves reflected from the boundaries and/or the other crack-tip with the
considered crack-tip, play an important role, is amenable for analysis, in most
cases, only though numerical techniques. The literature on numerical methods,
such as finite elements and finite differences, in dynamic fracture has been
succinctly reviewed by Kanninen (1978). Most of the techniques reviewed by
Kanninen (1978) fall into the category of "node-release techniques".

Recently, Atluri, Nishioka, and Nakagaki (1979), and Nishioka, and Atluri (1980
a,b,c) have presented formulations for a moving-singularity finite element method
for simulating fast crack propagation in finite bodies. An energy-consistent
variational statement is first developed (Atluri, Nishioka, and Nakagaki, 1979;
Nishioka, and Atluri, 1980 a), as a basis for the above "moving singular-element"
procedure of dynamic fracture analysis. The above numerical procedure has been
applied (Nishioka and Atluri, 1980 b,c) in studying the finite-domain counterparts
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of the problems with unbounded domazins for which analytical solutions exist (Bro-
berg, 1960; Baker, 1962; Nilsson, 1972; Freund, 1973). The obtained numerical re-
sults have been found to correlate excellently with the cited analytical solutions
for infinite domains, during the time intervals for which these analytical
solutions may be considered as valid. The computed solutions beyond these times,
and the knowledge of the various time periods involved for wave-interaction in
finite bodies, indicated both qualitatively as well as quantitatively the effects
of stress-wave interactions on dynamic K-factors for cracks propagating in finite
bodies.

In this paper, attention is primarily focused on the "application phase", viz.,
the determination of crack-tip velocity history (and possible crack ar.:rest) from
a given dynamic-fracture-toughness (K..) versus the crack-velocity (L) relation,
using the above described numerical procedure. To this end, the experimental
results of Kalthoff, Beinert, and Winkler (1977, 1978) on wedge-loaded rectangu-
lar (WL-RDCB) as well as tapered (WL-TDCB) double centilever beam specimens are
considered. In the first-phase of the presently reported study, the experimental
results for & versus time for the WL-RDCB specimen are simulated so as to numeri-
cally determine the dynamic K-factor variation with time and compare it with the
reported experimental (caustics) neasurements of dynamic K-factors. In the second
phase of the study, using the reported (Kalthoff, Beinert, and Winkler, 1977; 1978)
experimental results for K. versus L relatioms, and the crack-initiation stress-—
intensity factor K_., the ttack-propagation history in WL-RDCB, and WL-TDCB speci-
mens is numericallyQpredicted and compared with cited experimental results. The
present results are also compared, where possible, with independent numerical
results of Kobayashi (1979). Discussions are presented on the possible specimen-
geometry dependence of the KID vs I relation.

OUTLINE OF TRANSLATING-SINGULARITY FINITE-ELEMENT METHOD

As derived by Atluri, Nishioka, and Nakagaki (1979), the virtual work equation
applicable to a system of finite elements used to model the cracked body, be-
tween the times t. and t,, during which a Mode-I type crack-growth by an amount
AL takes place can be written as:

g[f {(g2+gl);5§2 oty el tav of T4+TH) . su’as
v s
Rn an
- f+(f2+il).592dz} + f {(gz+gl):5§2dv + p(§2+gl).592dv}
Z1’!. vS
=2, 1+ o 2+ =2, 11, . 2+
- _’;+(’g +’gl) L6u”dl - J.AZ+(? +\3.(:5 ).6u” ds

=0 (1)
S

In the above, V_ is the domain of the singularity-element; y 1is the crack-sur-
face contained Sithin the boundary of V at time t.; the super-gcript (+) refers
to the upper-half of the crack-surface Shich only Is modelled in symmetric
Mode-I case; AL is the amount of crack growth between times t, and t2; \Y 0 is the
nt regular (isoparametric) finite element in the craclfed—body; S is tgat por-
tion of the boundary (away from the carck) of V_ ;3 o, T, u, 65, Sg are, respecti-
vely, the stress tensor, applied traction vector, displacement vector, virtual
strain tensor, and virtual displacement vector; the superscripts (1) and (2)
denote, respectively the quantities at times t, and t,; yl is the unit normal
vector to AL. In the above the notation g:i6€=0{j0€45 and T.61~1=Tiéu has been used.
Note that at time t,, when the crack has opened % an additional amount AL, the

admissible virtual aisplacements are such that Gui
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?n the present procedure, the displacement field within the singular-element, V
is assumed to be: ;&

*
Ua(i,xz,t) B r%llam(ﬁ,xz,v)ﬂm(t) + Rigid body modes (o=1,2) (2)
*
When u n are eigen-function solutions for the elastodynamic problem of steady-
state ?with respect to an observer moving with the crack-tip) crack-propagation
at constant velocity v, as given in Atluri, Nishioka, and Nakagaki (1979). If x
(along the crack-axis)and x, (normal to crack-axis) are fixed cartesian coordi-
nates, (£,x.) is the coordinate system that moves with the crack-tip, ie.,
£=x1—vt. Ifi the present procedure, the assumed displacement field at times t
and t2, respectively, is taken to be that corresponding to Eq. (2) wherein the
velc?c1ty v takes on the values v. and v,, viz., the velocities at times t, and t
It': is further seen from the properties O0f the above eigen-functions (Atluri 2"
I:Ilshloka, and Nakagaki, 1979) that B, (t) in Eq. (2) is in fact the dynamic ;tress—
intensity factor and hence may be computed directly.

The total velocity and acceleration of a material particle in V_ are then:
. s

*

u =1I -

ua muamBm Vr%uam s Eem k=0
and U = Zu' B - 2viu B 250"

o m om m Vmuotm,ﬁgm Lk r%uam,gism )

where ( ),{=3( )/3E. T}'\e compatibility of displacement, velocity, and acceleration
at the bourdary of VS with the surrounding regular elements is satisfied through
a least-squares technique (Atluri, Nishioka, and Nakagaki, 1979).

A§suming that, between times t, and t,, crack growth occurs (which can be deter-
m1r'1ed, as explained below, in %he so-called "application phase' calculations

u51r.1g Fhe given material characteristic of a K. versus i relation; or is known
apriori, in the so-called "generation phase" c%?culation, ie., in Ehe case of
simulation of given I versus time data), the singularity element is translated, b
an appropriate distance AL from its location at time t, as shown in Fig. 1. $

| !

FIGURE 1 \ p
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Note that, unlike in the node-release technique of Kobayashi (1979), the above
§how'n amount AL is not, in any way, related to the distance between’any two ad-
jacent finite element nodes at time t.. Note also from Fig. 1 that, as the singu-
lar-element is translated, the surrounding regular elements are app;:opriatel ¢
distorted. After a sufficient amount of translation, say M.(AL), of the singular-
element, the distortion of the regular-elements may become accutt’e. In such a case,

g s
’ d
the re u(lar f)lllite element mesh is readjusted, as escribed in Nisllloka, and

The finite element equation obtained by using the variational principle of Eq.
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(1) can be shoyn to be:
md, + K, = 949, - Kgyny) for Uy

TSQSZ + 25352 4 §sqsz = g5 Lox Vs (4)
where V. is the region spanned by regular elements. It is shown by Nishioka and
Atluri %l980a) that out of all the matrices appearing in Eq. (4), two, viz., K
and D_ are unsymmetric, due to the use of the eigen-functions in the moving &
coordinate system (£,x,) as in V_. The Eans. (4) are numerically solved in the
present, using the weli—known Newmark-8 method. Once the displacements, veloci-
ties, and accelerations (viz., q_,.§ 2 and §_,) at the nodes of V_ are solved
for from Eq. (4), the undetermingﬁ pgrameters 8,8, and B , (andshence the dy-

i . . 2 N m L ~m ; :
namic stress-intensity factor, and its first and setond timé-derivatives) can be
computed directly.

CALCULATION OF KI(t) FROM GIVEN i(t) DATA ("GENERATION PHASE"):

Since the crack-velocity v=i(t), is known, using the velocitites v and v, at times
t. and t., respectively, the finite element equations (4) can be easily cOnstruc-—
ted. From these, as explained above, B (which is in fact equal to K ), B , and

kL can be directly computed at time tz as well as at all subsequent times.

PREDICTION OF %(t) FROM GIVEN KID VERSUS i(t) RELATION ("APPLICATION PHASE"):

Let the solution upto time t, be assumed to be known. In order to find the solu-
tion at t, from Eq. (4), the crack-velocity at t,, fes 5 W =7 (t,) must be found.
To this end, it is first noted that the dynamic Stress-in ensi%y factor can be
written as:

Ky Kl(t,v). (5)

Since, in the present procedure, the velocity of crack-propagation is assumed to
be constant within each time-step, an approximate procedure to predict the ve-
locity at [t,+(At/2)] will be sought. Using double Taylor series expansion, it
is seen from Eq. (5) that:
At = 1 Aty 9 ) n
+ = =7 =G = +av— (

Kppltrt 3591%Y) = hoo G gE tav et Kplepevy) (6)
wher§ K ’ is the predicted KI at t1+(At/2) while KI(tl’Vl) is known. One can now
rewrite "Eqn. (6) as:

2
_ Aty o (ae)y
KIP . KI(tl.vl) + (G )KI(tl,vl) + - KI(tl,vl) + R
-u(c)+(‘\—t)é<c>+<“‘zlé<t)+r<=x*+R (7a,b)
= BvE 2 ’'%1M 1 R | =~ ®1p a:bl

where, ( )=0( )/dt, R is the "residue" (all the omitted terms from the right-
hand side of Eq. (6)), and as explained above, in the present procedure,

KI(tl)EBl(tl), etc.

Using the predicted K of Eq. (7), and the given K__ versus $(t) relation, the
crack-velocity v(or E}Pat time [t,+(At/2)] can be predicted. Using this crack-
velocity value, the finite elemen% system of equation (4) at time t, can be
constructed, and from these, the actual dynamic stress-intensity factor KI(tz)
can be computed. Thus, the actual KI at tl+(At/2) can be computed, as:

K (e “g—t) (L) [Ky(£) + Ki(t)] ®)
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The correlation between the predicted K. of Eq. (7) and the actual K f E 8
can be seen to depend on the residue ‘Rxpof Eq. (7). To ensure this : lq-'( :
n'further approximation is introduced in the present work that the rezzgre ;tlon’
time t +(At/2) can be approximated by its known value at t -(At/2), in tﬁe o
case. Thus, in the present procedure, Eq. (7) is re-approxXimated ;S' ‘

K Lty Aty o (At)z“
T = B (e + G By (e) + SRR (e) - [K (e~ 29)- K*Ip(tl— 25 1c9)

generic

In the Prgfent calculation, when Eqn. (7) with R=0 was used an error of the
order of 3% between K and K. was noted. However, when Eq. (9) was used, this
error reduced to the obder of 0.5%. Further algorithmic details of the p;edic—

tion phase along with detailed error a i i
: nalysis studies, which ar i
will be reported elsewhere. , ¢ omitred here,

RESULTS OF GENERATION CALCULATIONS:

The presently used finite element mesh for the upper half of WL-RDCB s i
(Kalthoff and collegues, 1977) is shown in Fig. 2. Note that, in the h—
translating singular-element procedure, this mesh represents ;he confipz:zi?t

at the beginning of the crack-propagation. The singular-element is shg blonh
shaded area in Fig. 2. Plane-strain conditions are invoked. The ex eZ? . tli
m$nsur?d urnvktlungth versus time history (as well as the crack—veloc?t lsz:;a g’
time hlétury) for the WL-RDCB specimen (reported by Kalthoff, Beinert an Wiuil
1977) thh'A cruck—initiution stress—intensity factor K (lgrger thaé fractu?e -
toughness krc)of 2.32 MN/m3/2 are shown in Fig. 3. T
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FIGURE 2 FIGURE 3
Als?'ShOVn in Fig. 3 ére: (Z) the presently calculated dynamic K-factor, based
on (a) direct evaluation of f, as explained earlier, (b) using the crack:opening
gnorgy as computed from the present variational formulation, and the crack-ti
integral, and (c) using the crack-opening energy as computed from a global ?
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energy balance, and (1) the experimentally determined dynamic K-factors and
(ii1) the numerical results of Kobayashi [1979]. It is seen that the present
results under (Z)a.and b are almost identical. It is also seen that the

present results correlate excellently with those of Kalthoff and co-workers
(1977) during the first (2/3) of the propagation history. However, during the
1ast of (1/3) of propagation history, the present results exhibit a pronounced
peak as compared to the experimental results. It is felt that this may be partly
due to the fact that the present is a linear elastodynamic analysis while the ex-
perimental material (Araldite B) is viscoelastic in nature. It is interesting to
note that the numerical results of Kobayashi (1979) also exhibit a pronounced
peak as in the present results, except that this occurs much earlier in Kgbayashi's
results. The problem was reanalysed by slightly perturbing the data for ()
curve. These results (not presented here for want of space) indicate that these
slight perturbations, while not affecting the K-factor solution during the first
(2/3) of propagation, do alter the magnitude of the above mentioned peak in the
latter (1/3) of propagation. These results indicate the need for the extreme
care with which experimental data for £(t) should be recorded.

Results of Application Phase:

The experimental (Kalthoff and co-vorkers, 1977; 1978) results for K. versus
% relation, for WL-RDCB and WL-TDC3 specimens, that are used in the present anal-
yses are shown in Fig. 4.
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Two RDCB specimens, with K values of 2.32 and 1.33 MN/m3 " regpectively, were

analyzed using a plane-stragn assumption. Using the KI versus I relation of Fig.
4, the propagation histories in both specimens were preHicted, using the earlier
described procedure. The results for the two RDCB specimens are shown in Figs.5
and 6 representively, along with comparison experimental results of Kalthoff and
co-workers (1977) and available umerical results of Kobayashi (1979). It is
seen that the present predictions agree excellently with the cited experimental
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results. However, it is seen that, for the RDCB specimen with K =1.33MN/m3/2
the predicted crack arrest length is about 197% higher than the e%ﬂerimental '
length . Once again, it is believed that this discrepancy is due to the inade-
quacy of the present linear-elastic material modeling. The variation of dif-
fgrent energy quantities of interest during this edicted crack-propagation
history, in the first RDCB specimen (K =l.33MN/m572) is shown in Fig. 7. Since
ea§h of the indicated quantities T,U, and F, were calculated independently

us1ng the present procedures, the fact that their sum correlates excellently with
the input energy W lends credence to the present calculations.
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FIGURE 6 tlesee
FIGURE 7

The fi?ite’element model for TDCB specimen Eat initiation of propagation) is
shovn 1n‘F1g. 8. A K_ wvalue of 2.O§MN/m3/ is used. The predicted crack-propa-
gatlon history, based on the KIP vs I relation of Fig. 4, is shown in Fig. 9
nce again good correlation of the present results with the e i ones
(Kalthoff and co-workers, 1978) is noted. xperinental ones

ieSUlts were also gbtained in a study of the possible specimen dependency of the
I? versus I relation. These results, along with details of prediction phase cal-
culations for several other specimens, which are omitted here for space reasons,

a;e mentioned in the oral presentation of this paper and will be documented else-
where.
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