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ABSTRACT

Dynamic effects have been investigated for the steady-state fields of stress and
deformation in the immediate vicinity of a rapidly propagating crack tip in an
elastic perfectly-plastic material. Both the cases of anti-plane strain and in-
plane strain have been considered. The governing equations in the plastic regions
are hyperbolic in nature. Simple wave solutions together with uniform fields
provide explicit asymptotic expressions for the stresses and strains in the near-
tip regions. Ahead of the crack tip, in the plane of the crack, scaled independ-
ent variables have been introduced to investigate the domain of validity of the
dynamic solutions, and the transition to the quasi-static solution with decreasing
crack-tip speed.
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INTRODUCTION

The literature on dynamic effects near a rapidly propagating crack tip in the pre-
sence of elastic-plastic constitutive behavior is very limited. An investigation
of the dynamic near-tip fields in an elastic perfectly-plastic material was pre-
sented by Slepyan (1976), who considered both the cases of anti-plane and in-plane
strains. Dynamic effects near a propagating crack tip in a material with strain
hardening were investigated by Achenbach and Kanninen (1978), and Achenbach,
Kanninen and Popelar (1980), on the basis of J, flow theory, and a bilinear
effective stress-strain curve. These authors %ound results which are very similar
to the ones obtained by Amazigo and Hutchinson (1977) for the corresponding quasi-
static problem. In the presence of strain hardening the governing equations are
elliptic when the crack-tip speed is less than a certain critical value. The
usual separation-of-variables asymptotic analysis can then be carried out, which
yields singularities of the general type rP(-1 < p < 0) for the stresses and the
strains. As the crack-tip speed increases (or alternatively as the strain-
hardening curve becomes flatter) the nature of the governing equations becomes,
however, hyperbolic, and the near-tip fields appear to change character. Indeed
in the limit of elastic perfectly-plastic behavior the stresses become bounded and
only some strains display singularities, as shown by Slepyan (1976), and
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Achenbach and Dunayevsky (1980).

In this paper dynamic effects on near-tip fields are investigated for elastic
perfectly-plastic constitutive behavior. The approach is different from the one
employed by Slepyan (1976), and some different results have been obtained. The
full expressions for the fields in the immediate vicinity of the propagating crack
tip, which have been obtained elsewhere (Achenbach and Dunayevsky, 1980), are
briefly reviewed. As the crack-tip speed decreases the expressions for the stress-
es reduce to the ones for the corresponding quasi-static problem, as might be ex-
pected on the basis of intuitive arguments. The strains, become, however, un-
bounded in the limit of vanishing crack-tip speed, which indicates that the trans-
ition from dynamic to quasi-static conditions is non-uniform. A detailed investi-
gation of the fields ahead of the crack tip, in the plane of the crack, shows that
the transition from the dynamic to the quasi-static solution with decreasing crack-
tip speed is effected because the dynamic solution is asymptotically valid in a

small zone, which shrinks on the crack tip in the limit of vanishing crack-tip
speed.

GOVERNING EQUATIONS

Both a stationary coordinate system vwith axes denoted by x,, and a moving coordi-
nate system with axes denoted by (x,y,z) are considered.
system has its origin at the propagating crack tip. The geometry is shown in
Fig. 1. 1In this section the equations governing the motions of an elastic per-
fectly-plastic material are stated in the stationary coordinate system. In the
next sections these equations are simplified for anti-plane strain and plane
strain, for the special case of "steady-state'" fields of stress and deformation
relative to the moving crack tip.

he moving coordinate

Xz“ A
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Fig. 1. Propagating crack tip with stationary and moving

coordinate systems.
Relative to the stationary coordinate system the equations of motion are

_ 2
3J'Oij = atui (1)
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i Tresca
Tn the zone of plastic deformation the stresses are assumed to satisfy the
yield condition, which states that

(2)

!T\max

| i i i ure shear.
where 111 is the maximum shear stress, and k is the yield stress in p
max

y . b
For an elastic perfectlyplastic solid the total strain rates are defined by

el pl 3)
= - .
atEij ateij 5t51J

Here the elastic strain-rates are defined by

Y (4)
- 1 %%kbis)

el 1
5.e.. =5 (8, 0,.
Utelj 2y il
where p and v are the elastic shear modulus and Poisson's ratio, respectively.
The plastic strain rates are

(5)
3 g?% =X s,.
tij ij

¢ . A it
where s defines the stress deviator, and X is a non-negative proportionality
1]

P e
factor, which may vary in space and time. Equations (1) - (5) should be supple

mented by appropriate boundary conditionms.

i t
For the case that the crack-tip speed approachei‘alzonsEanzrzziuznzwdziormation
i i dy-state fields of s
increases, it may be assumed that steé ] ; mat
are estabiished relative to the coordinate system moving with the crack tip
This assumption implies that the time derivatives may be expressed as

3 . (6a,b)
3 ,00) = mvy gy a ()~ v 5

"
In the sequel the speed of the crack tip will appear in the ''Mach number M,
which is defined as

(@2
M = vw/(u/p)ll2

where (u/p)l/2 defines the velocity of shear waves in an elastic solid with
shear modulus u.

CRACK PROPAGATION IN MODE-TIT

i i i— strain
In the moving coordinate system (e¥s2) s steady—staFe motion 1? antgbslazﬁe
is defined by a displacement w(x,y) in the z-direction. By using ( 3
equation of motion (1) then reduces to
2

(8)
9 0 + 93 0 -p v_ 3 w=0
X X2 y yz © XX

The Tresca yield condition (2) may be expressed in the form

9)
02 + 02 < k2

s
Xz yz —

and the Prandtl-Reuss flow law (3)-(5) yields by using (6a)
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It is sufficient to consider the solution in the half-

-1 -
u x

X Xz z

|

= axoyz - 2) oyz

conditions at y = 0 are

’

x <0 : B, = 0 (12)

x>0 : Uyz>0 , w=0 (13)
The yield condition (9) is identically satisfied by

Oz = -k sinw, o = k cosw (l4a,b)

yz

(10)

(11)

plane y > 0. The boundary

By introducing the strain component W, s wa together with (1l4a,b) in (8), and

eliminating 2) from (10) and (11), we obtain

i 2y

cosw wa + sinw aym + M E-wax =0 (15)
and

cosw Jd_W_ + sinw 3 w + < 3w =0 (16)

%R yxX U X

where M is defined by (7).
Equations (15) and (16) constitute a hyperbolic system of equations. Appropriate
solutions to this system of equations have been constructed by Achenbach and
Dunayevsky (1980) as:
For 0 <6 <6

o, =~ k [(1-¥s1n?0)1/2 - i1 cos8] sine an

bk
Oyz =k [(1—Mzsin26)l/‘ cosh + 1 sinzo] (18)
v = - (k/uM) cos_l[M sin28 + (L—Mzsinzo)l/zcose] (19)
k (1-M 2 1
wy i {_EH 'n[1-M sin“e - (l-b151n20)l/2 cos0]
l+ D) 9
2§ en[1+M sin“s + (l—M'sinze)l/zcose] + ¥(y) (20)

where Wy = dw/3y and ¥(y) is an as yet undetermined function. The angle 0* is
given by the relation

E -1

8 = - tan " (1/M) (21)
For (3'f < B <m

Oxz =-k, Oyz =0 (22)

2209
W= - (n/2) (k/uM), e ™ ¥(y) (23)

For various values of M, cxz and Uyz have been plotted for the domain

0 <8 < 6* , in Figs. 2a and 2b.
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Fig. 2. Dimensionless shear stresses, clek and oyz/k N
versus 9 , for various crack tip speeds; k = yield
stress in pure shear; - - - quasi-static solution.

For M = 0, (17) and (18) reduce to cxz = -k sinf and oyz = k cosb ,

respectively, which are the expressions for the quasi-static stresses derived by
Chitaley and McClintock (1971). Thus, as one would perhaps expect intuitively,
the dynamic stresses reduce to the quasi-static ones in the limit M = 0.

An approximate expression for ¥(y) can be found from the condition that w should
be bounded for y = 0, x = rp where rp is the length of the plastic zone. ?For
small y the expression for wy given by (20) then implies that

kK 1- 1-M
= ;—[—ﬁﬂ zn(rp/}y]) - S5 m(1-M) - pm 2+ 1] (24)

It follows from (20) and (24) that wy is singular at the crack tip. In the

¥(y)

*
domain 0 < 8 < 6 we find
W, ~--E»———-&Ln(r/r ) (25)

This result shows that wy not only becomes unbounded as r - 0 , but also as
M > 0. The strain component L is bounded as r -+ 0, but it becomes unbounded in

the limit M + 0. Thus, for the strains there is no uniform transition from
dynamic to quasi-static conditions. This transition will be discussed in more
detail in the sequel.

K final result of interest is the crack-opening angle. This angle, which is

defined by tan% a = |wx' at 6 = 7, follows from (19) as



2210

-1
a =2 tan ~ (mk/2uM) (26)
As M > 0 we find @ = 7 , which is in agreement with the quasi-static result.
MODE-I CRACK PROPAGATION IN PLANE STRAIN

’
In Fhe moving coordinate system (x,y,z), steady-state motion in plane strain is
defined by displacements u(x,y) and v(x,y) in the x- and y- directions, respec-

tively. We assume that o, is the intermediate stress, i.e., 0_ < o_ < o_. For
¥ — 2 =

the elasFic.case this is true, for the elastic-plastic problem it must be checked
a posteriori. It was noted by Koiter (1953), see also Geiringer (1973, p. 514),

that the Tresca yield condition then implies that atepl = ¢P+ = 0. The condition
z
of plane strain consequently reduces to Ejl = 0 , which by virtue of (4) yields

the result
.= v(cx + oy) 27)

We now introduce the following new variables

1 . o ik
=3 (0X - cy) 3 =3 (cx + cy + oz) (28a,b)

u axu i v, = BXV (29a,b)

By the use of Eq.(27) it is then easily checked that the equations of motion in
the moving coordinate system may be expressed in the form
3

T . -5 v -
x%- 2(1+v) axO " aycxy eV, qux . (30)

[}
o

3 2
-3 Fromet -
yo_ 701+ Byo + axgxy PV, v, (31)

Expressions for Bxex and Bxey follow from the Prandtl-Reuss flow equation (3)-(5).

By considering 3 (e -e ) we find
X Xy

Byvx -du = (rv) o_ - (1/w) 3,0_ (32)

Similarly the relation for 3_e yields
X Xy
3 + = - |
Yy Byux (2x/v,) L + (1/v) axcxy (33)

For plane strain the Tresca yield condition can be expressed in the form

2. 2 2
a” + Loy ™ k (34)

Finally, the boundary conditions at y = 0 are

< 0: = = . (i = =
X oy 0, Oy 0; x>0:v=0, Oy = 0, 9yy > 0 (35a,b)

It is noted that the yield condition (34) is satisfied identically by
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(36a,b)

g = - osw ; O = - k sinw
» ki c 5 %y

By introducing these expressions in (30) - (33), and subsequently eliminating
(X/vw) we arrive at a system of equations of the general form

8ui Bui
Lijax Ty 00 er
jm1 1 y
where
u =, U, = o, uy=u o, U= v (38)

and the components of the matrix Lij are given by Achenbach and Dunayevsky (1980).

Just as for the anti-plane case we seek simple wave solutions of Eq.(37). Un-
fortunately, for the plane strain case the system is too complicated to yield an
analytical solution. It is, however, possible to obtain simple wave solutions for
small values of M, where M is defined by (7), by using a perturbation method which
is discussed in some detail by Achenbach and Dunayevsky (1980). It turns out that
the stress fields depend on 8 for 8; <6 59; , while constant states prevail for

* *
0<6 <8 and 6, <6 <7 . Here we are particularly interested in the fields
ahead of the crack tip. We find
*
o =T+l 2w+ oedy (39)
1 4 2
*
and for 0 < 6 < 61
o =00y ; o =k + 00 (40a,b)
xy ’ y ’
o = kn+000) 5 o, = 2vk(l4m) + o) (41a,b)
kTl 2y . Sk » 2 '
€ =5 [z - v@M 1 +000) 5 ey =[- # (=a)(lin)] + 00 ) (42a,b)

Thus, in this important domain all dynamic effects are higher order. It should be
noted that the fields for § > 81 do show a stronger dependence on M.

Anofher result of interest is the Mode-TI crack-opening angle, which is defined by
tama = ivxl. We find

tanka= W et 43)
UNIFORM ASYMPTOTIC RESULTS IN THE PLANE OF THE CRACK

The expressions that were stated in the previous sections may not be the most

general solutions satisfying the boundary conditions and the governing equations.

They are the so-called simple-wave solutioms. In the plastic zone these solutions,

which are the simplest ones that can be found, do not seem to have uniform validity g
for arbitrary values of M and the spatial coordinates. For the Mode-III case this

is suggested by the observation, that the strain fields do not uniformly evolve

into the corresponding quasi-static solutions as M decreases. It appears that the

domain of validity of the simple wave solutions in the plastic zone shrinks on the

crack tip as M decreases. To investigate this behavior in somewhat more detail

for the Mode-III case, a separate asymptotic analysis has been carried out for a
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wedge-shaped region defined by small values of the angle 6.

As point of departure we rewrite (15) and (16) in polar coordinates (see Fig. 1),
and we seek solutions of the form

w=w(r) o+ w3(r) 03+ - - - (44)
o= () 8+ [w ()], 03 + - - - (45)

Substitution of these expansions into the governing equations yields a system of
ordinary differential equations for the coefficients. Here we restrict the
attention to the first-order terms, i.e., to w(r) and w_(r). After introducing

p = En(r/rp) where rp defines the boundary of the plastiC zone in the plane of the

crack, we find

Y N TR P O 3
(1-M7) o - (1-M)w - w™ + X M w v 0 (46)
d
e AT e
(1-M) e (1-M )wx + L W 0 (47)

It was found necessary to analyze the solutions to (46) and (47) separately for
M~ 1 and M > 0.

For the case M + 0 we introduce the following 'boundary layer" variable

=M Qn(r/rp) (48)

A length y asymptotic analysis, which includes matching of w_ to the elastic strain
at x = rp (the elastic-plastic boundary), yields the following expressions, which

are uniformly valid for 6 =0, 0 < r < T B8 M~>0

v, - M_l(k/u)(r/rp)M - /) + 0(1) (49)

w=1+0(M) (50)

For r > 0 we find

W = Y e, In(x/r,) + 0(1) (51)

while for r/rp + 1 we have

wy = MY (o) in(x/r) + 8 [sm(r/rp)]2 + 001 (52)
where B is a constant.

Equation (49) should be compared with the expansion for small 6 that can be ob-
tained from (19) as

w = ML (M) (k/u) 0 (53)

Clearly (49) and (53) agree in the limit r + 0. Similarly (25) and (51) agree as
r > 0. Thus the simple wave solutions (17)-(20) are valid for small values of r.

2213

The extent of the domain of validity can be estimated by comparing the orders of
magnitude of the two terms in Eq.(49). The first term is negligible as compared
to the second one when

1/ (54)

(r/rP)M =0(M) , i.e., when r/rp ~ M
Thus the boundary layer in which the dynamic solution is valid becomes extremely
small as M decreases.

When (r/rp) ~ 0(1), an expansion of (r/rp)M with respect to M can be carried out

[i.e., (r/rp) ~ 1+ M Qn(r/rp)], to yield

w o= (k/u) [in(r/r )-1] (55)

w=1 (56)

These expressions agree with the asymptotic approximations to the quasi-static
solutions presented by Chitaley and McClintock (1971).
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