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ABSTRACT

A dislocation model is developed to analyse plastic behavior of a growing crack.
The plastic zone size and the crack tip opening displacement for the steadily pro-
pagating cracks are computed. The plastic zone size for a steadily propagating
crack is around 80 percents of that for a stationary crack loaded by the nominally
equal stress intensity factor. The opening displacement for the steadily pro-
pagating crack is about one fourth as small as that for the stationary crack.
Secondary yield zones formed near the newly-created crack surfaces appear. This
model can be applied to crack propagation events under the other modes, cyclic load-
ing, monotonically increasing loads and so on.
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INTRODUCTION

It is essential for understanding crack propagation events to clarify elastic-
plastic behavior of material near the crack tip. However, elastic-plastic anal-
ysis near a growing crack tip have hardly been made.

A crack in metallic materials grows in the plastic zone ahead of its tip.
Material element which was at the crack tip before the crack grew is unloaded in
elastic manner and material element which was ahead of the crack tip is deformed
further, after the crack propagates. Therefore, size of plastic zone and crack
tip opening displacement for a growing crack may be fairly different from those for
a stationary crack under the equivalent load.

Chitaley and McClintock(1971) computed the size of plastic zone and the crack
tip opening displacement for a steady state propagating crack subjected to mode III
loading in an elastic-perfectly plastic material. They indicated that the size
of plastic zone and the crack tip opening displacement for the propagating crack are
respectively four ninth and one fourteenth in comparison with those for a stationary
crack with the identical length.

Anderson(1974) calculated behavior of a steady-state propagating crack under
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mode I loading in various work-hardening materials by use of finite element method.
For almost all fracture problems, mode I crack propagation is a major factor. In
fatigue crack propagation and stable slow crack growth observed in plane stress
fracture, behavior of these cracks can not be completely understood without the
knowledge of plastic zone size and opening displacement of a growing crack in
elastic-plastic materials.

In the present paper, a steadily growing crack under mode I loading is ana-
lysed by means of a model of Tinear discrete dislocation arrays. A dislocation
mode] was successfully used to calculate plastic relaxation of a stationary crack
subjected to anti-plane shear and tension by Bilby et a1(1963,1964) . In the
model, both of plastic zone and a crack were represented by linear dislocation ar-
rays collinear with the crack itself. On the other hand, Atkinson and Kanninen
(1977), Vitek(1976) and Miyamoto and Kageyama(1977) analysed the stress distribu-
tion near an edge dislocation oriented in a given direction in a cracked infinite
plate using complex stress function. They and also Riede1(1976) applied the solu-
tion to the problem of the plastic relaxation of a stationary crack with inclined
slip lines ahead of its tip, a model first used by Bilby and Swinden(1965).

In the present paper, the solution of stress for an edge dislocation near a crack
given by Vitek(1976) is utilized.

DISLOCATION MODEL FOR STEADY CRACK PROPAGATION

Foundation of The Dislocation Model

It is postulated that when a crack is remotely loaded under plane strain con-
ditions, a pair of the inclined slip Tines on which density of edge dislocations
continuously varies, represents plasticity of the crack tip as shown in Fig.Tl.
When material is perfectly plastic, resolved
resultant shear stress on the lines is equal ?o
to shear yield strength of the material.

The resultant shear stress is the sum of k=2 OCV. y ] k=1
shear stress due to the crack alone under “\\LZ‘__’/ SoR
the applied Toad and that due to interaction a
between the crack and the dislocations. > P
We have the following equation for equilibrium. X
4y d crack
Tys = ) AL, fﬁ‘ D(yp)T (4,9x)dyk
(1) k=3 k=4

where Tys is the yield strength of the i
material, t€(y) is shear stress at y due to g
the crack, D(yy) ;s density of the edge dis-
location at yg, T (y,yx) is shear stress aty
due to the dislocation with an unit Burger's
vector at Yk. Vitek(1976) solved numeri-
cally the above equation by replacing the con-
tinuous distribution of the dislocation density by discrete dislocations with
Burger's vector Pjx placed at  equal intervals. The above equation is rewriten
for equilibrium on the slip line I as follows:

4

=tw,) + L g By, O ), i=1,°"",N (2)
Tys =T (yi k21§21 ik yi’yjk ’ ’ ’

Fig.l. Dislocation model for sta-
tionary crack tip plasticity

where 16(y;) is shear stress at point i due to crack, bj is magnitude of Burger's
vector of a dislocation to be placed at a point j on the’“slip line k¥ and Td(yi,yjk)
is shear stress at a point i due to a dislocation with an unit Burger's vector
placed at a point j on the slip line k. For symmetry, magnitudes of Burger's
vector at identical points on the every slip line are the same. So, we can drop
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the'subscr1pt k from_bjk. These are linear simultaneous equations with unknown
variables bj.. Point i, where the shear stress is evaluated, is placed midway
between the distributed dislocations as used by Miyamoto and Kageyama(1977).
Crack tip opening disnlacement can be calculated by

. N
v = 2.0 sinf jgl bj (3)

and plastic zone can be judged by the condition that

T

4 N
T < . -d
“ys > T (gN+l) L3 kél j§1 bj 1 (UN+1;9jk)- (4)

Model for Steady crack propagation

When a crack grows under a constant load in an infinite plate, element of
material at the crack tip is unloaded in an elastic manner.
of the element as the crack approaches it and passes through it is shown in Fig.2.
It should be noted that plastic strain is kept invariable in the unloading process.
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‘/// strain
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Fig.2. Stress-strain history experienced by

Fig.3. Model for plasticity of a
an element near a propagating crack.

propagating crack tip

Since Burggr's.vector represents plastic deformation, dislocations formerly distrib-
uted at slip lines should not be redistributed after the crack grows, providing that
the resultant shear stress on the slip Tines behind the current crack tip is between
the yield strength on tension and that on compression. Governing equation for a

propagating crack based on Eq(2) is,

ns

Tys = T°(y;,0ns) + T, k§1 jgl by O yyenggelpl e i=1,500 0. ()
where 1€(yi,%ns) is the shear stress at a point i on the active slip line for the
current cracg of length 2,5 due to the crack itself, Pjn is Burger's vector distrib-
uged at a pointjon the slip Tine at the tip of the crack of which length was 2n,
T9(y;1,94x,4n) is the shear stress at a point i on the active slip line for the cur-
rept crack due to a dislocation with unit Burger's vector placed at a point j on the
5119 line k at the crack tip of its length 2n. In the above equation, unkown
variables are bjpg(j=1,-+-,N). This situation is shown in Fig.3.

Stress-strain history
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COMPUTATION RESULTS

Computation Parameters

Since it is postulated that a crack propagates in high strength steel, the com-
putation is made using the following parameters;

Shear modulus: 79380 MNm 3 tio: ) e

Shear yield strength: 490 MNm™?, Angle of slip line against x axis: 90

The model used in this analysis has two arbitrary parameters. One of themh
is the space between the dislocations and another is the crack growth amount at eac
propagation step as shown in Fig.3. It can be, howeyer, expectgd that behavior
of crack tip plasticity would converge to thatofasteadily and continuously propaca-
ting crack as their values approach zero.

Poisson ratio: 0.3

Plasticity of Stationary Crack

i i i i i i t of a stationary
First, plastic zone size and crack tip opening d1sp]acg@en
crack with 1gngth of 4 mm in an infinite plate loaded by uniform tension of.29éy4ml
are computed for various spaces of dislocations. The results are shown in Fig.4.
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Fig.4. Dependency of plastic zone and crack tip opening displacement ondislocation space.

Plastic zone size rapidly increases as the j; 10
space of dislocations decreases and ap- N
proaches a converged value of 1.27x107"mm L 8
for the space below 1.58x10~3mm. The =

opening displacement alsc increasgs with
decrease of the space of dis]ocat1ons,.but
the rate is moderate. It still varies
with the space below 1.58x10™*mm to_?p—
proach a converged value of 1.95510 ‘mm.
It can be seen from the results in F1g:4
that the plastic zone size is insensitive
to the dislocation space while the'crack
tip opening displacement is sensitive.
Magnitudes of Burger's vectors of the d1s;
Tocations arrayed at intervals of 3.37x10
mm on a slip Tine are shown in Fig.b.
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magnitude of Burger's vector

vector possessed by dislocations.

Fig.5.Distribution of magnitudes of Burger's
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A dislocation nearest the crack tip has the greatest Burger's vector.

This fact
corresponds to that the dislocation den-

sity at the crack tip is infinite in BCS 2

mode1(Bilby et al, 1963,1964). Since

edge dislocations have a function depress- 10-3 3
ing the stress at points behind them re- s=1.58x10-

garding the direction of their Burger's 5
vectors, a dislocation with the bigger
Burger's vector must be placed at the

point closer the crack tip as shown in

o} s=1.2x10-2
Fig.5.

Plasticity of Steadily Propagating Crack - L 4 . L L J

0 1T 2 3 4 5 6 7
number of steps
M2=3.7x10"" mm

To examine the effect of a crack
growth amount A% on the crack tip open-
ing displacement, calculation is perform-
ed for various values of the crack growth
amount from a half to two times of the
crack tip opening displacement for the
initial crack. Loading condition is
the same as that for the stationary crack.
In Fig.6, crack tip opening displacement
values for a propagating crack are plott-
ed against the growing steps for various
dislocation spaces. The amounts
crack arows at each step are chosen to have
the_following three values: 5.0x10"%mm, 1.0
x107'mm and 3.7x10~ *mm.

As seen in the figures, the crack tip
opening displacement value drops consider-
ably after a crack has grown at the first
step and then, gradually increases with
the following steps to converge to a con-
stant value for each of the dislocation
spaces. Drop of the crack opening
displacement at the first step is bigger 10-°
for the longer dislocaticn spacing and for
the smaller crack growth sten. 5
Dependency of the drop on the crack growth
step  can be seen from the fact that the
initial slip lines become closer to the sTip 2
Tines in the second step as the crack
growth amount becomes shorter, and there-
fore, dislocations on the first-step slip

(mm)

number of steps
(b) A2=1.0x107° mm

crack tip opening disolacement

$=3.0x10-3

lines more significantly affect the dis- T 5=1.2x10°2 (mm)
tribution of the dislocation on the
second-step s1ip lines because stress com- 2

ponents around a dislocation are reduced
as a function of the reciprocal of the
distance from the dislocation. Also, 0 2 3 4 5 6 7
the dependency of the drop in crack tip number of steps
opening displacement value on the dislo- No 8
cation space can be explained from the (c) 42=5.0x10-* mm

fact that on the initial slip lines, Fig.6. Dependency of crack tip opening
dislocations having bigger Burger's dispacement value during crack
vector are located near the crack tip for propagation on dislocation space
the Tonger dislocation spacing, and the and crack growth amount.
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dislocations reduce considerably the stress on the second-step slip lines near the

crack tip.

It is noticed that a steady state value
of crack tip opening displacement for a pro-
pagating crack takes place earlier for the
longer crack growth amount and the shorter
dislocation space and the crack tip opening
displacement value in the steady state is
dependent on the these parameters.

Their effects on the crack tip opening
displacement are now considered in more de-
tail. In Fig.7, the crack tip opening
displacement values in the steady state for
four crack growth amountsare plottedagainst
the reciprocal of the number of dislocations
placed on the slip 1ine corresponding to the
dislocation space. These gradually in-
crease with reduction of the dislocation
space. Except the result for the crack
growth amount of 3.7x10"*mm, the results for
three crack growth amounts focus at 5.3x107*
mm when the dislocation space approaches zero.
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Fig.7. Crack tip opening displacement plotted
agaist the number of arrayed dislocations

reciprocal of

We can deduce from this result that the crack tip opening displacement for the
uniform tension of 294 MNm~2 may be 5.3x107*mm,

steadily propagating crack under
which is 27 percent of that for a stationary
intensity factor.
propagating cracks are shown as a function of
the shear yield strength.

ues for the corresponding stationary crack are also indicated.

crack tip opening displacement values for the

The ratios are around 0.26 for all applied stresses.
<ize for the both cracks are also given in the third column.

DISCUSSION

In Fig.8, the steady crack

In the figure, the crack tip opening displacement val-
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Fig.8. Crack tip opening displacemeﬁt
as a function of applied stress.

TABLE 1 Ratios of CTOD values and plastic
zone size for the both cracks

(PZS)pC/(PZS)Sc

~0.70
0.87
0.77
0.80
0.86

crack loaded to a nominally equal stress
tip opening displacement values for
applied stress normalised by twice of

Ratios of the
both cracks are listed in Table 1
Ratios of the plastic zone
They are about 0.83.

2161

We will compare the results com i i i
e e puted in this analysis with the results whi
g?gg?zggélal4gf05:ggﬁed u?1ng E ﬁin;te element method. He calculated thezp;ﬁqng
3 surface behind the crack tip by one mesh for the steadily pro-
Ei%?ﬁ;??ycggESi 1oadT?ﬁEez:?t;bQUt 60tper§ent of one for a stationary crack u%dgr
| S in contrast to 26 percent in this analysis.
?SYﬁver, as mentioned by himself in his paper, it does not seem that h¥s results
L, ig Sonveggifregard1ng the mesh sjze. Additionally, it should be noticed that
b ery difficut fqr thg crack tip opening displacement to be expressed by a
ini 8 elgmenthana;ys1s using constant strain elements
n the other hand, plastic zone shapes in two diménsio i
) : sha ns around a growing crack
E;g wg:e accurately obtained py the finite element analysis while in th?s ana?ysis
bl y are fg?resgnted by two lines symmetrically emanating from a crack tip. It‘
met;250551 er1rect1y to compare the plastic zone shapes analysed by the both
e con:%der g Ee maximum size of plastic zone perpendicular to the crack line will
A d? ecause the_sl1p lines are normal to the crack line in this analysis
rOWinccor 1Eg to the finite element results, the plastic zone size for a steadi]y.
?y y ug]cqggd was arognd.BO percept. of that for a stationary crack under the nomial-
ment?oned o ; This is very similar to those listed in Table 1. It should be
b ZoneaSiEZefg$1gt1gnih1p between the crack tip opening displacement and the
stationary crack c i i
g y an not be directly applied to the case of
As stated in the section on the model f
2d in ) ¥ or steady crack propagation, dislo i
Elgiid Sn 5115'11nes at the previous crack tip are not rediszrigu%ed through tﬁ2t1ons
crack p‘opagﬁ ion process for the sake of reducing the computation time. Inorder
amine the propriety of the simplification in the computation, the shear stress

distribution on the slip lines behind rr r i

JUELY the current cra ar n

showi, 311 Fig.9. T SEeies e " ck tip.are calculated and are
: x10

butions are results on the slip line at

the initial crack tip and the fourth- 6
step slip Tine after the crack propa- &
gated by seven steps under tensile ' i Tys
stress of 196 MNm~=¢, The stress is = o
beyond the shear strength in the range . i
of y/yp from 0.2 to 1.0. It is a AN
reason for the result that the shear N r
stress component near the crack tip < 0
loaded by uniform tension is larger at 5 y/yp
6 above 90° than at 1=01° when the ryl
distance from the crack tip is identi- = & I
cal. £ i
The crack tip opening displacement R
obtained in this analysis may be con- b
servative becauseredistribution of the 6 s
dislocations is not performed. )

It should be noticed from Fig.9
that a secondary compressive yield
zone may be formed near the newly-
crea%ed crack surfaces as in the
results calculated by Anderson(1974) and b it j

y Chitaly and McClintock(1971).
Although Anderson suggested that the existence of the secondary yig1d zgne probably

depends on the way in which the relaxati
on near i i
from the present work that this may be inherent.the srack. Trp 5. ETomECy T BeEs

Fig.9. Stress distribution on the slip lines
behind the crack tip after 7 steps.

CONCLUSIONS

A dislocation model is develo i i
on ped to analyse plastic behavior of a propagatin
crack. Plasticity of the crack tip is represented by inclined slip ?ingsgat tge
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crack tip and descrete dislocations on the lines. The plastic zone size and the
crack tip opening displacement for the steadily propagating cracks in high strength
steel plate are computed. Computed results depend on the dislocation spacing and
the amount of crack growth at each step. When values of these parameters approach
zero, the plastic zone size and the crack tip displacement converge to constant val-
ues. The following conclusions are deduced:

(1) The plastic zone size for a steadily propagating crack is around 80 percent of
that for a stationary crack loaced by nominally equal stress intensity factors.

(2) The opening displacement for the steadily propagating crack is about 26 percent
of that for the stationary crack.

(3) Secondary yield zones formed neér the newly-created crack surfaces appear as in
the results obtained by the other researchers.

The model developed here can be applied to calculate plasticity of a crack pro-
pagating in other modes, under cycl'c loading, under monotonically increasing load
and so on.
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