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ABSTRACT

A finite element model is presented of fast fracture and crack arrest in double
cantilever beams under fixed grip loading conditions. Eight-node isoparametric
elements and a special crack tip element incorporating terms of the Williams'
eigenfunction expansion for the stress field at a crack tip are used. The model
is very efficient at the static level for the determination of stress intensity
factors throughout the whole crack history of the DCB specimen.

An efficient dynamic algorithm is employed maintaining long term stability even
when subjected to rapid changes in boundary conditions. The phenomenological
analysis, which uses an experimentally determined speed versus dynamic stress
intensity factor characteristic, aims to reproduce existing experimental results.
Results, in terms of the crack propagation history and the termination of the
fracture event, make favourable comparison to those of earlier work and to
experiment.
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INTRODUCTION

The dynamic crack propagation problem has come under increasing attention in
recent years at both the theoretical and experimental levels. In particular,
Kalthoff, Beinert and Winkler (1977) and Hahn and others (1973, 1976a, 1976b)

have produced a substantial amount of experimental details and results of tests on
double cantilever beam (DCB) geometries, under fixed grip loading conditions.

This type of test model is highly suitable for a theoretical analysis due to the
high degree of symmetry involved and the known crack path. A pioneering
numerical model has been developed by Keegstra and colleagues (1977, 1978) and has
achieved notable successes in regard to modelling crack propagation velocities and
crack arrest lengths. The model is limited in effectiveness, however, due to

the use of a highly refined mesh of numerically inefficient constant strain
triangles.
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The work, which is described here, was undertaken to improve the computational
efficiency of earlier work and incorporates a base mesh of higher order elements
and a novel crack tip element. This type of approach has the immediate advantage
of providing improved completeness generally and is much better equipped in
particular to model the complex stress field occurring in the critical region
surrounding the tip of the propagating crack. The specification permits the use
of relatively coarse meshes whilst still retaining a high degree of accuracy.
Thus, whilst the generation of the element matrices becomes more involved and
lengthy, the overall computational effort is reduced because of the smaller
number of equations.

The element configuration operates within a dynamic algorithm, again chosen on the
basis of computational efficiency, and attempts have been made to follow pheno-
menologically the experiments mentioned earlier. Keegstra's work has already
shown that this is possible, but it is hoped that this analysis will offer

certain worthwhile improvements.

CRACK TIP ELEMENTS

The fundamental problem confronting mathematical models of the fracture process,
is to describe accurately the complex nature of the stress field in the immediate
area of the crack tip. The r™% stress singularity at the tip implies that purely
polynomial based elements will have a poor rate of convergence and hence will
require extremely fine meshes for adequate tip representation. This difficulty
may be overcome by incorporating the stress singularity in the formulation of a
special crack tip element. Fawkes (1976) has investigated the effectiveness of
these various modelling techniques and concluded that an element of the embedded
singularity type (Fawkes, 1978) holds certain advantages over the rest.

Fig. 1. Crack tip element

An element of this type is used in the investigation reported here. The full
description has been detailed in earlier work by the authors (1979, 1980), but
briefly it incorporates terms of the Williams' eigenfunction expansion for the
stress field at a crack tip. It has been observed that elements with differing
numbers of terms of the expansion are all admissible at the static level, the
full formulation being completed by a mixture of polynomials. The element has
13 nodes, see Fig. 1, and is topologically equivalent to two adjacent 8-node
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rectangular elements. This enables easy interchange of the element within a mesh
of standard parabolic isoparametric elements. The crack runs from a corner node A
to a point B on the base line. The position of the tip, and hence the crack
length, may be varied by moving point B further along the base line into the
element. 1In all, nine variants of the element are available with the extreme
crack lengths being equivalent to the corresponding 8-node element mid-side node
positions. By a subtle combination of changing variant and altering the position
of the crack tip element within the overall mesh, it is possible to model tip
incrementation on a much finer scale than from one 8-node element boundary to
another. It will be noted that for certain crack lengths there is the possibility
of more than one crack tip element configuration.
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Fig. 2. Edge crack, uniform tensile stress

The elements have been tested on simple unimode test problems for which solutions
are known (Rooke and Cartwright, 1976). The following results relate to an
element specification combining the singular term only of the eigenfunction
expansion with a complete polynomial, quartic in the crack-extension direction
and quadratic in the 8 = m/2 direction. The problem depicted in Fig. 2 refers to
an edge crack in a finite width sheet under loading conditions of uniaxial
tensile stress. A mesh of 4 x 2 8-node elements, in which two elements had been
replaced by the singularity element, produced results for a series of a/b rati?s
which are shown graphed against the theoretical curve. A discontinuity producing
an error of the order of 10% occurs on element interchange for an a/b ratio of
0.375. Further refinement of the mesh results in this deviation being greatly
reduced. Other simple problems concerning centre cracked specimens have been
reported in an earlier paper by the authors (1980), together with the effect of
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mesh refinement.

In the course of the analysis, several versions of the crack tip element were
tested. Variants were investigated in which the displacement incompatibility
between the crack tip element and the surrounding 8-node elements was limited by
the introduction of a form factor, restricting the range of the singular term
involvement. No significant difference to the displacement field was found, in
accordance with the argument of Patterson (1973), that the quality of convergence
is not necessarily reduced when not using fully conforming elements.

As a further test of the reasonableness of the mathematical model at the static
level, the opening mode stress intensity factor, , was determined for the whole

K
crack history of the DCB specimen and is shown in %ull in Fig. 3.
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Fig. 3: Static stress intensity factor in DCB specimen

A theoretical curve, derived by Kanninen (1973), is represented by the dashed
line in the same figure. A coarse 10 x 2 mesh was used and the results are
highly acceptable, within 5% of Kanninen's solution. As would be expected, the
maximum deviation from the curve occurs on element interchange where significant
changes are made to the system matrices. Tip incrementation appears to have
little or no malefaction to the equations.

DYNAMIC ANALYSIS

The discretised form of the equations of motion of a continuum can be written in
matrix form as
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in which [K], [c] and [M] are the system stiffness, damping and mass matrices
respectively, F is the generalised force vector and u is the displacement vector.

The dot denotes differentiation with respect to time. Two basic methods exist
for the solution of these equations but, due to the time dependent boundary
conditions, a normal mode analysis must be discounted. We are left with the step

by step integration technique and in terms of computational efficiency, the
approach of Hitchings and Dance (1974) is most desirable since it preserves
symmetric matrices and does not require the inversion of large matrices. The
accelerations at sequential time points are related by a Lagrangian polynomial
and the derivatives are used in Taylor expansions to determine estimates of the
displacement and velocity at the next time point. Equation (1) may then be used
to obtain the accelerations. The procedure is repeated iteratively until the
process converges at each time step.

The dynamic problem is only conditionally convergent, requiring the time interval
to be less than the period of the highest eigenvalue in the system. However,
this imposes no increased restriction on the analysis since the time step must be
small to be capable of following the rapid changes in geometry.

The algorithm has been tested in the context of a simple bar problem. A
compressive load acts initially on the bar, it is released and the speed of the
resultant stress wave is measured. Results to within 5% of the theoretical wave
speed have been obtained using a coarse mesh and a convergence requirement within
the iterative loop of 8 figure accuracy. This convergence criterion requires

" 12 iterations per time step, which makes the solution process much more
efficient than other methods involving inversion of large matrices.

A further test of the validity of the dynamic analysis was performed on a model

of the DCB specimen. A certain over-straining was applied to initiate the

program and the boundary conditions were held at a fixed crack length over a

large number of time intervals. The complex vibrations in both the horizontal i
and vertical directions were observed with no apparent decay. The two tests lead i
to the conclusion that the crack tip element and background mesh of quadrilaterals

operate efficiently within the dynamic algorithm.

DYNAMIC CRACK ADVANCE

The program was to be validated by attempting to follow the results obtained
experimentally by Kalthoff and colleagues (1977). They used wedge loaded DCB
specimens of Araldite corresponding to the data given in Table 1. The crack
propagation phase was followed by a high speed camera and dynamic stress intensity
factors were derived using the method of caustics (Theocaris, 1972).

The finite element model consisted of two rows of ten identical elements, to
permit interchangeability of the crack tip and isoparametric elements. The crack
tip speed versus dynamic critical stress intensity factor, K__, characteristic

was inferred from Kalthoff's observations and was used to control the tip advance
mechanism. After a tip advance the stress intensity factor was allowed to build
up until it attained the dynamic toughness, at which point the tip was advanced

by replacing the current element mass and stiffness matrices by the advanced
versions within the overall system mass and stiffness matrices, and by inter-
polation of the displacements, velocities and accelerations.
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Table 1 DCB Specimen Data

Elastic modulus 3.66 x 102 Nm~2

Poisson's ratio 0.392

Fracture toughness 0,79 x 108 Nm=3/2
Initial crack length 66 mm

DCB half-depth 63.55 mm

DCB length 321 mm

DCB thickness 10 mm

Density 1.223 x 103 kg m3

Pin opening displacement 3.607 x 1074 m

To maintain the necessary energy balance resulting from the creation of new crack
surfaces, energy was required to be dissipated in the region of the crack tip.
This was modelled by the provision of 'holding back forces' to the opening edge
immediately behind the crack tip. The rate of dissipation of energy, Gp, is given
by

2
. - KIp (2)
D E

for the dynamic regime, where E is the elastic modulus.

The forces are derived
from the restraining surface stress,

_ _ 5 (x)
Oy = AKID 1 E(1H> (3)

in which § is a time averaged displacement.
agree with egn. (2) by adjusting the constant X and the length over which they
act, 1 With this model of energy dissipation, there should be no need for

subsequent adjustment of the holding back forces in order to remove energy at the
required rate.

The forces are tuned initially to

The numerical model chosen, corresponded to the most seriously overstrained of
Kalthoff's experiments with a crack initiation stress intensity factor, K of
2.32 MNm /2. The crack was allowed to advance in the manner previously g
described and the full crack history is shown in Fig. 4, together with the
experimental results of Kalthoff shown by the dashed curves. The velocity curve
is obtained by calculating the gradient to a fitted curve of crack length against

time for a succession of crack lengths, a dynamic stress intensity factor,Kgy“,
is then inferred.

This approach, whilst demonstrating the average condition, does not describe the
complex stress wave variations which appear in the instantaneous velocity curve,
Fig. 5. Here, two notable events can be cbserved; at a crack length of 145 mm
the fast dilatational wave impinges on the crack tip after reflection from the
far end of the specimen. Secondly, a combination of the joint coincidence of the
slow rotational wave and the fast wave after a second reflection at the crack
front is marked by a severe retardation of the tip at a length of » 175 mm.
Figure 5. amply demonstrates Kannien's view (1980) that the DCB specimen is

the most dynamic of all possible structural configuations.

Results from the numerical model show that after initial tuning, G_ operates
within a tolerance band of 10% of the required rate. K builds up after tip
advance to initiate further propagation, indicating tha%Dthe dynamic algorithm
can adequately withstand the disruption caused by tip advance.
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Fig. 4. Stress intensity factor for crack propagation
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Fig. 5. Instantaneous crack speed chart

DISCUSSION AND CONCLUSIONS

A crack tip element has been designed which accurately represents the complex
stress field at the crack tip. Although the element is relatively complicated,
it can be used in very coarse meshes whilst still retaining a high degree of
accuracy. The element can be used in conjunction with a mesh of 8-node
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quadrilateral elements to model the crack propagation process, using a
computationally efficient dynamic algorithm. Since commencement of the
investigation, other work has been reported in which quadrilateral meshes have been
used with and without crack tip elements, Owen and Shantaram (1977), Nishioka and
colleagues (1980) and Mall and Luz (1980). However, not one of these analyses

has followed the Keegstra method in its attempt to model the dynamical situation.

Conditional stability of the algorithm presents no problem because the time
stepping increment must be small to follow the rapid changes in boundary
conditions. However, the conditional stability of the iterative process
restricts the choice of eigenfunction terms to the low order ones only. Energy
dissipation in the model is adequately represented by holding back forces which,
after initial tuning, dissipate at the correct rate for the whole crack history.

Validation of the program was made by comparing results to available experimental
data. The results, in terms of the crack propagation history and the
termination of the fracture event, make favourable comparison to experiment and
to those of Keegstra. But, whilst his analysis required a mesh containing 253
nodes and only permitted a crack increment of 6 mm, the present analysis employs
only 85 nodes and a tip advance of 4 mm is possible.
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