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ABSTRACT

The problem of line crack extension in dissipative continua is studied within the
theory of classical thermodynamics. By a global dissipation analysis, the expres—
sion of intrinsic dissipation is given and the crack tip force G associated with
the crack extension velocity is introduced. If G # 0, it is shown that the crack
tip behaves like a moving heat source and T ~ - Log r . The obtained results are
new and give a general framework for the study of coupled thermomechanical beha-
viour near the crack tip. Classical notions such as Rice-Eshelby integral, energy
flux of Freund, energy release rate are extended for arbitrary continua. Usual
models of elastic, viscoelastic and plastic materials are considered.
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INTRODUCTION

The objective of this paper is to present a thermodynamic description of the
running crack problem in arbitrary dissipative continua [ 12, 13, 4] . This descrip-
tion illustrates the development of energy methods in the context of fracture. In
many points, the proposed theory is different from Cherepanov's [5], or Rice's
[15] or Gurtin's [9] descriptions, the two last ones are devoted to the Griffith
model of brittle fracture.

The basic problem associated with the formulation of a criterion for crack exten-
sion is the characterization of the local state of stress and strain near the
crack tip. This problem has been successfully studied in elasticity. Significant
results have been obtained such as the notions of stress intensity factors, path
independent integrals, energy release rate, etc... [3], [14].

From a macroscopic point of view, if we consider that crack extension is an irre-
versible thermodynamic process in a similar way as friction or viscosity or plas-
ticity, then classical methods of continua mechanics can be applied and a satis-
factory description can be derived in plasticity,viscoelasticity as in elasticity.
Here it is shown that classical notions are extended in a consistent manner and
that basic equations governing the coupled thermomechanical behaviour are esta-
blished.
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For this, we present in the first section the thermodynamical analysis of a plane
body with a running line crack, undergoing small transformation. The material is
not necessarily elastic. The crack tip force G associated with the crack extension
velocity is introduced. The expression of the intrinsic dissipation is given. In
particular, it is shown that if G # 0, the crack tip behaves like a moving heat
source and the temperature is singular as - Log r .

The general theory is then illustrated by usual models of elastic, visco-elastic
and elastic plastic materials. Significant results given in the literature are
reviewed in the context of the present description. New results will be presented,
such as the coupled thermomechanical singularity in thermoelasticity.

The estimation of the crack tip force is discussed in detail. Our attention will
be focussed on Rice's estimation G = 0 in the elastic perfectly plastic case.
Although our definition of G seems to be different, the estimation G = 0 results
effectively from the stress and strain singularity analysis [12] , not only for the
elastic perfectly plastic model, but also for certain models in viscoelasticity,
when the reversible surface energy is absent. The estimation of G in the presence
of reversible surface energy is a rather complex problem, the reader may refer to
[13] for a short discussion in the case of mechanical reversible surface energy.
Here, we assume that reversible surface energy is neglected, all surface energy
will be considered as dissipative.

THERMODYNAMIC DESCRIPTION

Let us consider the dynamic response of
a simple body with a line crack which
corresponds to the two dimensional pro-
blem of the fig. 1. The material, not
necessarily elastic, is defined by a
free energy density per unit mass W,
function of the state variables (£,2,T)
where € denotes the strain tensor, &

a family of internal parameters and T the
temperature. The internal energy is
e(€,0,8) = TS + W, the entropy density S

Q

-—>

and the temperature verifies :
oW _ de
a0 T 733 (1)

The first principle of thermodynamics gives the energy balance :

G+C=p +7P
e [ed

S =

al 2

for an arbitrary system of material points occupying a volume V.
The quantities U, C, P _, Py denote respectively the global internal energy, the
kinetic energy, the exferndl power and the calorific power

U=J pedV C=Jo\:\2/2dv

v v (3)

P = J n.o.u ds , P = - J q.n ds
e v cal v

The second principle inequality leads to the notion of intrinsic dissipation and
thermal dissipation. We recall that for regular system, the intrinsic dissipation
is

al

where D = J DAV and D = 0f - p(é -18) =oc - o(W + ST) 2 0 is the volumic
dissipationsV
At the crack tip A, the thermomechanical fields may be singular. If we take for V

the whole body §0(t), the relation (4) is still available under the following
assumption :

D=JoT§dV—P >0 (%)
v e
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Assumption H1

The Ffunctions D, TS and ST are Lebesgue—integrable functions in Q(t).

So we rule out the presence of shock waves where both T and S may have finite dis-
continuities and TS, ST are not integrable functions. The integrability of D is

a quite physical assumption since D corresponds to various volumic dissipations.
For further purpose, we introduce also the following basic assumption :

The transport condition of the singularity for a physical quantity g is :
g=-1 .t (more regular terms integrable) (5)

i.e. the dominant term of g is exactly - Ly

This assumption, which is identically verifiéd for steady motions of crack, means
that the singularity of the quantity g must have the same nature. One can remark
that g + kg ) is the derivative of g with respect to time in the moving reference
with the > crack tip.

For the whole body, the computation of U and C is not straightforward since e and
i 0 are not necessarily integrable. Let us isolate the crack tip by a closed cur-
ve I', delimiting a volume VF(t) in translation with the crack. If VF and CF
denote respectively :

UF(t) = [ pedV y Cf(t) = J p 0%/2 dv (6)
2(£)-Vy(6) 2(t)-Vo.(t) ;
then we obtain with the assumption H2 for ) g = ple + u?/2)
lim (ﬁr +Cc)y=0+¢C (7
Indeed : -0 ¥
d $
FlU+0 - (Ur +Cpl = %L]o(e +u%/2)(x + £(t) - £(t),y,0)dV and
0+ ¢ - 1im(1‘1F + &) = lim J T (o(e +42/2) _ + Qo(e + u?/2) |}av_=0
-0 r-0 Jv.(t) ok ’ °

because the integrant is an integrable function.
The first principle gives for the system of material points occupying the volume
Q(t) - v (t) at time t :

r

J _ p(é + U ﬁ)dV = J n.o.uds - J n.o.uds + J q.nds - J q.nds - J q.nds (8)
Q@ V{ ¢io) r T 30 I
The left hand side can also be expressed as

6? +C + J lo(e + 4%/2)n ds 9)

r T 1

From (2), (8), (9), we obtain simply :

lim| q.nds = lim J {o(e + GZ/Z)n1 + n.o.ulds (10)

r-0’T r-0 ’T

The second principle gives for the same system :

J DAV = J oTédV + J q.nds + J q.nds - J q.nds (11)
Q-vp Q-v a0 ZF r

From (4), (11), we obtain simply :

A
D= | DdQ + lim | {£p(e + GZ/Z)nl + n.o.u}ds. (12)
Q r-+0 ‘T
If we introduce the crack tip force G :
G = lim {p(e + \.12/2)11l + n.o.u/l}ds (13)
r+0 ’T
then the relation (10) shows that the crack tip behaves like a heat source of
intensity G £. The relation (12) shows that the global dissipation consists of
two terms : volumic dissipation D and local dissipation at the crack tip.
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The relation (13) gives the expression of G in terms of the singularity of the
thermomechanical fields. We remark from the two assumptions H 1, H 2 that (TS)
is an integrable function, thus : ’

lim | £ TSnds = lim | &(T8) 4V = - lim J (T8)’av = 0 (14)
-0 ‘T +0 ‘vp ’ -0 /vr

This relation and the transport condition of u show that the crack tip force can
also be written as

1

G = limJ {ow + \12/2)n1 - n.0.u  lds (15)
r-0’T #
The thermal evolution of the crgck body follows from (10). We obtain indeed :
Div q + pTS = D + GL §(A) (16)
where §(A) denotes the Dirac measure at the moving crack tip. For example, if the
Fourier law q = - k gradT is assumed, we obtain the thermal equation :
- kAT + pT§ = D + GLS(A) (17)

Let us prove that the temperature is singular (T ~ Log r) if and only if G # O,
otherwise T is finite at the crack tip. 8~

Indeed, if the temperature can be expandgd as T = H(t)ra. (Logr) T(e,t) , we
obtain necessarily a =0 , B =1, T = T(£) since the heat source must be finite,
q ~ - k gradT ~ r~'. The temperature field is then T = H(t) Logr.T (L) + more
regular terms r (Log r) , m > 0. But from the equation (17), it follows that

_cl
2km

T = Log r + regular terms rm(Log r)n , m>0 (18)

This result is new and has been given recently [4], [ 13] . We underline the fact
that the temperature singularity is here obtained for a large class of materials.
Our description gives a general framework for the determination of coupled thermo-
mechanical behaviour.

In quasi-static transformation, the crack tip force G can also be characterized
as an energy release rate.
Indeed, we have in this case the possibility to define a global parametric des-
cription [12], [13]. The system is completely defined by the state variables
(¢,a,£,T,0_,) which are respectively the displacement over 90, the internal para-
meter fielé? the crack length, the temperature field and the irreversible stress
field Oppg=0"° 9W/3¢ . Let us consider the functional :

)

¢(&,a,£,T,0 (oW + o pE)dV (19)

IR [Q(t)
The partial derivative 0¢/3f represents the surface force T acting on 9% , the
partial derivative 3¢/da represents the generalized force field associated to
o, the partial derivative 93¢/0T the field - oS and the derivative 8¢/8UIRFhe
field €
In the references [12], [ 13] we established that

9
G = - 2% (£,0,8,T,0.) (20)
ILLUSTRATIONS IN ELASTICITY, VISCOELASTICITY & PLASTICITY

The theory is here illustrated by usual models of material in elasti-
city, viscoelasticity and plasticity. We wish to verify by reviewing the obtained
results in the literature that the two assumptions Hl and H2 are fulfilled and
the proposed theory is consistent. )
Almost classical results are related only to the pure mechanical problem; In this
case, we recall that the basic equation is the energy balance P =E + C+0D
where E is the reversible, elastic energy of the whole system. Tfe assumption HI
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corresponds then to the integrability of D = of - pﬁ , W denotes here the elastic
energy density.

For elastic materials, the free energy density is a function of the state variables
(e,T) and ¢ = p3W/3e . There is no volumic dissipation i.e. D = 0 .

In quasi-static transformation, Rice [ 14] and Cherepanov[5] have discussed the
stress and strain singularities for the mechanical problem, when W(g) is a homo-
geneous polynomial function of €. It has been shown that W = K(t) r~l @(8) and
thus the assumption H2 is verified.

The formula (15) reduces to the classical Rice-Eshelby integral

}ds

G = lim| {pWn, - n.o.u }Jds = | {p Wn, - n.o.u
50)T 1 1 r 1 1

-0 >

Remark that o¢ ~ r
principal value exists.
If the transformation is dynamic, smooth solutions have been studied in linear
elasticity [ 1] . We verify without difficulty the two assumptions Hl, H2. The quan-
tity Gl “where G is given by (13) has been introduced in this case by TFreund[ 7]
as the energy flux into the crack tip.

The peneral case of dynamic thermoelasticity has been recently discussed in the
context of our theory [4] . The asymptotic solution of the thermomechanical fields
is given up to the second terms for both displacement and temperature. It has been
established that the temperature singularity (18) does not change the dominant
singularity of the mechanical fields which are the same as that obtained in isother
mal elasticity. This new result illustrates for the first time the coupled beha-
viour near the crack tip.

The intrinsic dissipation D = G} is a finite measure at the crack tip for elastic
materials. This expression enables us to construct systematically "standard" laws
of crack propagation if we assume normal dissipation in a similar way as standard
laws of plasticity and viscoplasticity [8], [ 10] . These laws correspond to the
existence of a dissipation potential ¢*(#) such that :

>

so the function W is not integrable although its Cauchy

"
¢ =22 (b (21)

. . *
For example, the Griffith law corresponds to § =G <£>
tension law (21) may be written as

, and the crack ex-

If ¢ <G, then £ = 0

(22)
If G = G, then § > 0

where GC denotes a critical dissipative surface energy.

Only the purely mechanical problem has been discussed.
L?t us consider firstly Kelvin models of viscoelasticity. In perfect viscoelasti-
city i.e. without internal parameters the free energy is W(e,T). The quantity

o, = p 0W/3e 1is the reversible stress, g = 0_ + O and we obtain D = g__.¢c .
In the linear case, the constitutive equationS are o_ = L.e and 0. = Mélg

These equations show that if the tensors L and M are positive defi%%te, o is
more singu}?E than ¢ . A singularity analysis shows that O~ r! a dIR

e ~o, ~r '". The formula (13) gives G = 0. Since p~r~! and W~r the two
assumptions Hl and H2 are well verified.

Perfect Maxwell models are discussed in a similar way. The free energy is
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W(e - gp,T) with g = p3W/3e . The volumic dissipation is D = gép. In the linear
case the constitutive equations are g = L.(g - eP) and ¢ = MeP. These equations
show that ¢ ~ Le and thus a singularity gives simply 0 ~ & ~ r~ the singula-
rities of stress and strain are those of linear elasticity for a moving crack.
Non-linear Maxwel]r models have been discussed recently [ 11] . If we assume that

eP= C(|o|/o Y sl |o|2=0...0.. it has been shown that if m < 3 the
ij o ij'"vo 1j771]

stress singularity is that of linear elasticity, if m > 3 the stress singularity
. = =1 . . p

is r L In the later case G = (. In both situations, the two assumptions

Hl, H2 are verified.

In perfect plasticity, the free energy is W - eP , T) with o = p 3W/%e and

D = oép. Let us consider the case of linear elastic strain stress relation and
quasi-static, isothermal transformation. The constitutive equations are

o5 =L(e - eP) and ¢P = 2 3f/30 in the plastic range.

Significant results are due to Chitaley,Mc Clintock [6], Slepyan[17], kice and i
coworkers [ 16] . Plane strain analysis in mode I shows that the stress distribution i
may be compared to the Prandtl's distribution, but an unloading region near the f
free boundary is observed. The stress is bounded and the velocity u ~ Log r gives }
an opening displacement [u] ~ r Logr . The assumption Hl is fulfilled since
D = geP ~ r~1 | The basic assumption H2 is naturally verified. The formula (13) i
gives simply G = 0.

For hardening materials, there exists a discussion fromAmazigo andHutchinson [ 2]

in the case of linear isotropic hardening. It has been shown that the stress is i
singular as r$ with - 1/2<s<0, s >0 if Et/E +0 and s > - 1/2 if {
E /E » | . The formula (13) gives always G = O from this singularity analysis. i
The estimation G = 0 does not result from bounded stress distribution near the
crack tip. In incremental plasticity, it is expected that o€ has the same singula-
rity as 0P, thus it is integrable and gives G = 0.

This estimation has been suggested by Rice in many published papefs. But the defi-
nition of G used by Rice is not the same, we denote it here by G :

* *
G = lim J {w n - nd.u 1} ds
* [E -0 ’T 2
where W = J ode is the deformation energy which is not a state function in incre-

mental plastlcity.
CONCLUSION

Our discussion shows that for several models of material the energy method does
not provide a local fracture parameter, except in elasticity. The global intrinsic
dissipation consists of volumic term D and eventually a local term Gl, the estima-
tion G = 0 means simply that there is no crack tip energetic parameter. In that
case, we underline the fact that the temperature is finite.
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