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ABSTRACT

This paper surveys and discusses recent developments in general aspects of analysis
related to the determination of opening-mode stress intensity factors from isochro-
matic fringe data. Various methods are applied to selected fringe patterns from
lifferent fracture test specimens, and considerable emphasis is placed on comparing
the values of K obtained from the different evaluation procedures used.
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INTRODUCTION

The study of the stress and strain fields around the base of stationary and running
-racks is fundamental to fracture mechanics. Under linear-elastic conditions, both
stresses and strains display a singular behaviour at the crack tip, with the stress
intensity factor, K, providing a convenient measure of the magnitude of the
singularity. A single parameter characterization of the crack tip stress field in
terms of K is generally recognized as adequate for engineering practice and is valid
{f attention is restricted to a very small region around the crack tip (the
singularity-dominated zone).

Frequently however, crack tip stress field regions that are too large for a one-
parameter representation become of interest, either due to a growth in size of the
fracture process zone or as a practical consequence of experimental methods for the
Jetermination of K. For example, even in a brittle solid, roughening of the fracture
due to spreading out of advance cracking (secondary flaw opening) and incipient
branching substantially enlarge the fracture process zone. As a second example,
isochromatic fringes in the immediate vicinity of the crack tip may be visibly
distorted (Fig. la) or the crack tip region may be obscured by a pseudo-caustic
formed due to light-scattering at the crack tip (Fig. 1b). In addition, for reasons
such as crack front curvature, fringe clarity, an unknown degree of plane strain
constraint close to the crack tip, etc., data taken from fringes further away from
the crack tip would be less prone to error and hence preferable.
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Fig. 1 Experimentally obtained isochromatic fringe patterns illustrating (a) the
visible distortion of fringes close to the crack tip and (b) masking of the
crack tip region by a caustic-type formation.

A general analytical basis for stress field representations will be presented in
this paper and the historical development of K-determination methods will be
summarized. For brevity, examples of experimentally obtained static isochromatic
fringe patterns around opening-mode cracks in three representative standard fracture
test specimens will be analyzed using several different methods and the results
compared.

THE DEVELOPMENT OF K-DETERMINATION PROCEDURES

During the 1950's, Post (1955) drew attention to the advantageous use of photo-
elastic techniques for the study of crack-tip stress fields. A subsequent photo-
elastic investigation of propagating cracks was made by Wells and Post (1958) using
the technique of high-speed photography. Irwin (1958a), in a discussion to that
paper, suggested a simple engineering approach for the determination of K-values
from the isochromatic patterns of a mode-1 crack. Irwin's analysis was based on
the Westergaard-type stress function approach (Westergaard, 1939; Irwin, 1958b),
and represents a special case of Muskhelishvili's method. To better match the
experimentally recorded fringe patterns with analytically generated ones, Irwin
introduced an additional uniform stress field, 0px, which acts parallel to the
crack line, and in an infinite specimen, does not contribute to the stress inten-
sity factor. This additional stress field, which cannot be directly incorporated
in the classical Westergaard function, Z(z), represents a far-field influence on
the stress pattern, and is proportional to the a-term, or more precisely, the Ag-
term in the analysis that is given in a subsequent part of this paper.

Irwin's method made use of the fact that for a given fringe (Tp=constant), 9Tn,/30
is zero at the apogee point of an isochromatic fringe such as that shown in

Fig. 2. A measurement of the apogee distance, rpy, and the fringe loop tilt, Op,
can then be used to obtain the value of K and o, using K,, an expression for the
normalized stress intensity factor, based upon a two-parameter (static or dynamic)
solution (Etheridge and Dally, 1977; Rossmanith and Irwin, 1979; Dally, 1979),

where
K
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with a* = 0,,vV2mr/K and c = crack speed.
Om It is generally recognized that egn (1)
X adequately describes the state of stress

in the immediate neighbourhood of the
crack tip, excluding a very small
region around the crack tip itself.

The region of validity of this equation
is however quite restricted and the
problem is complicated by the transition
in the local neighbourhood of the crack
tip, from a state of plane strain to
generalized plane stress. This occurs
even in thin specimens, and the size

of this transition region for purely
elastic specimens is of the order of one-half the plate thickness. To avoid this
region of uncertainty, and for some of the reasons mentioned previously and illus-
trated in Fig. 1, the experimental stress analyst is constrained to take measure-
ments in regions which may lie outside the range of validity of the two-parameter
stress field representation. It thus becomes necessary to use parameters addition-
al to K and o to provide an adequate representation of the stress field in an
enlarged region around the crack tip and to better match experimentally recorded
and analytically generated fringe patterns (Etheridge, 1976). Considerable work

in this area has taken place in the past decade.

C, crack velocity

Fig. 2 Geometry and coordinates for a
typical pair of isochromatic fringe loops.

Particular attention has been paid by Rossmanith and Irwin (1979) and Rossmanith
(1979, 1980) to the effects of including a first higher order term proportional to
2%, which is the lowest order non-singular term in the Westergaard-type stress
function, 2(z). This term is referred to as the B-term or the Bj-term in the
subsequent discussion. Using a three-parameter representation in terms of K, a,
and B, the shape of an isochromatic fringe loop becomes

Tm =

F3(r, 6, c, a*, B¥*) (3)
2mr

with the normalized stress intensity factor, Ky, given by

-
2TV 2mry

n

K = H3(rm, 6m, c, a*, B*) (4)

The evaluation of the desired parameters can be accomplished in a number of
different ways. A logical extension of an analysis based on one or two fringe is
to take advantage of the full field data available from isochromatic fringes, and
develop a method of K-determination based on a finite set of measurement points.
These points might lie on different fringe loops (and hence may belong to different
levels and states of stress) and could be either randomly distributed (Klein, 1974;
Sanford and Dally, 1979; Irwin and co-workers, 1979) or selected in some particular
fashion (Rossmanith and Irwin, 1979; Chona, Irwin and Shukla, 1980). The use of a
non-linear least squares technique can be easily combined with an overdetermined
set of simultaneous equations from a large number of data points (Klein, 1974;
sanford and Dally, 1979; Irwin and co-workers, 1979; Sanford, 1980), and can be
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conveniently used for analyses based on an n-parameter approach to the problem.

In general, the shape of an isochromatic fringe loop for a mode-1 propagating crack
can be represented by

Tn = Re Xz + 1 Im Xy (5)
where the complex functions X; and X, are linear combinations of suitably chosen
Westergaard-type functions, 2Zp, 22, Yj, and Y (Irwin, 1980). For static cracks,
eqn (5) reduces to (Sanford, 1979; Rossmanith, 1981)

=2 Y+ ki (z-2@ +¥)| (6)
where the stress functions are suitably chosen to be

N M

Z(z) = I BZ" ' and Y(2) = & AyZ" (7
n=0 m=0

from which, K = Byv2m; a* = o r/rg = 2r/rg AO/BO; and B* =

Br/rg = rg B1/Bg-

Here,

rg is a scaling length, which may be assigned a value typical of the size of the

measurement region being used.

The upper limits N and M in egn (7) denote the

number of half-integer and integer power terms being retained in the analysis. A
summary of K-determination methods and their associated index pairs (N,M) is given
As an example, a six-parameter method (N=M=2) calls for the

simultaneous evaluation of K or By, A,, By, Ay, B2, and Aj.

in Table I.

TABLE I Summary Showing the Historical Development of K-Determination Procedures
Number of Data Points Used
1 2 large
. " Static (0,-)
,; C.W, Smith, 1972
e
g Static (0,0) Static (0,0) Static (0,0)
< Irwin, 1958 Bradley and sanford and
% 2 Dynamic {(0,0) ?536 Kobayashi, Dally, 1979
o Irwin et al, Dynamic (0,0)
A 1975 Irwin et al,
] 1979
g
E Static and Static and Static and
& Dynamic (1,0) Dynamic (1,0) Dynamic (1,0)
i 3 Dally and Rossmanith and University of
3 Etheridge, 1978; Irwin, 1979 Maryland, Photo-
E Rossmanith and mechanics Lab.,
5 Irwin, 1979 1979-1980
Iy
8 Static and
Y Dynamic (N,M)
o N — University of
[} Y Maryland, Photo-
g mechanics Lab.,
Z 1979-1980
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ILLUSTRATIVE EXAMPLES AND DISCUSSION

Figure 3 shows the geometries of the three standard fracture test specimens used as
examples in this paper. 1In each case, the figure shows the crack tip location in
the specimen, as well as the region around the crack tip used for data acquisition
purposes. The fringe patterns obtained experimentally are shown in Figs. 4a, 5a,
and 6a, for the SEN, MCT, and RDCB specimens respectively.

Each fringe pattern was analyzed to obtain the values of the associated parameters
using several different methods of K-determination. The methods used ranged from
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Fig. 3 Geometry and dimensions of the standard fracture test specimens used

showing the relative location of the crack in the specimen.
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a 2-parameter apogee point technique to a 6-parameter least squares solution. The
fringe patterns corresponding to the parameter values obtained by different methods
have been plotted and are shown in Figs. 4b-4d for the SEN specimen, Figs. 5b-5d
for the MCT specimen, and Figs. 6b-6d for the RDCB specimen. All plots have been
drawn to the same scale as the experimental photograph for easier comparison.

In the case of the SEN specimen, the main loops (N > 2.5) are predicted quite well
by all the four solutions shown. However, differences in the shape and location
of the 0.5 and 1.5 order fringes are readily apparent. The computed value of K
varies a small amount from the apogee point (N=3.5) to the 3-parameter solution
(1.68 to 1.74 MPa-m), but the computed value of o is appreciably different when
a 3-parameter solution is used, changing from -0.42 to -0.33, or almost 50%. This

2-PARAMETER APOGEE POINT SOLUTIONS
USING N=35:; - -~ K=1.70MPa-m"?; a=-04'
USING N=2.5: — K=1.49MPa-m"?; a=-086l

EXPERIMENTALLY RECORDED ISOCHROMATIC
FRINGE PATTERN AROUND A STATIONARY
CRACK TIP IN AN SEN SPECIMEN (a/w=0.30)

5 [ 15/ 15 15

05 25

c
2 -PARAMETER LEAST SQUARES SOLUTION  3-PARAMETER LEAST SQUARES SOLUTION
K=168 MPa-m"2, a=-0.42 K=174 MPa-m"?, a=-0.33; B=-0.9

Fig. 4 Experimentally recorded isochromatic fringe pattern from an SEN specimen
and the predicted fringe pattern and parameter values corresponding to
the different K-determination methods used.
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is quite consistent with previously reported results (Chona, Irwin and Shukla, 1980)
nd is to expected since fringe loop tilt and shape are both affected by a and B.

'he MCT example shown in Fig. 5 represents a rather deep crack (a/w=0.80), and the
fringe pattern of Fig. 5a has obvious boundary influences present. The 2-parameter
apogee point and least squares solutions completely fail to predict the salient
features of the actual fringe pattern. The 3-parameter least squares solution,
ilthough capable of matching medium-sized main loops (N=3.5 to N=5.5) quite well,
loes not correctly predict the fringe distribution ahead of the crack tip. The
fringes produced by the steep gradient field ahead of the crack require the use of
it least a 6-parameter solution (M=N=2, Fig. 5d) before the global appearance of

E}O 2- PARAMETER SOLUTIONS
APOGEE POINT (N=3.5)
—— K=1.06 MPa-m“?3; a=0
APOGEE POINT (N=5.5) and LEAST SQUARES
-—- K=1.25 MPa-m'"2; a=0.132

25 35 4.5

EXPERIMENTALLY RECORDED ISOCHROMATIC
FRINGE PATTERN AROUND A STATIONARY
CRACK TIP IN AN MCT SPECIMEN (a/w=0.80)

2.5

c
3-PARAMETER LEAST SQUARES SOLUTION 6-PARAMETER LEAST SQUARES SOLUTION
K= 13l MPa-m"2;, a= 064, B=-1.06 K= 126 MPa-m"2, a=0.043, B=-0752

Fig. 5 Experimentally recorded isochromatic fringe pattern from an MCT specimen
and the predicted fringe pattern and parameter values corresponding to
the different K-determination methods used.
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the predicted fringe pattern begins to match that seen experimentally. However,
differences still exist between Figs. 5a and 5d, indicating that for the crack
location and data acquisition region used, a model of order higher than six may
well be required. Notice, that the variations in K are similar to those of the

SEN specimen example, with computed values ranging from 1.25 to 1.31 MPa-m% using
2-parameter through 6-parameter least squares solutions. Once again, variations in
computed values of o are larger (0.043 to 0.614) and changes in B are also quite
significant (-0.732 to -1.06).

In the RDCB example shown in Fig. 6, fringes of order N > 3.5 are matched fairly
well by both 2-parameter and 3-parameter solutions. However, the shape and
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2-PARAMETER LEAST SQUARES SOLUTION 3-PARAMETER LEAST SQUARES SOLUTION

K=0.675 MPa-m"2; a=1.14 K=0732 MPa-m"#; @=129; B=-1.42

Fig. 6 Experimentally recorded isochromatic fringe pattern from an RDCB specimen
and the predicted fringe pattern and parameter values corresponding to
the different K-determination methods used.
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orientation of fringes of order 2.5 or less are only adequately modelled after the
introduction of the B-term. The specimen used was 9.5 mm thick, and even the fringe
of order 2.5 lies quite close to the crack tip. Variations in K-values as deter-
mined from the different methods are small (0.675 to 0.732 MPa-m%) but the a-term
changes more, and especially after the R-term is introduced, since it is quite

large.

CONCLUSIONS

In summation, it can be seen from the examples presented, that adequate modelling
of the stress state present can require the retention of as many as six terms in
eqn (7) and that reliable values of both K and a can only be obtained when the
solution includes at least the By, Ay, and B terms. Rossmanith and Irwin (1979)
have provided a summary in tabulated form of the characteristic features of the
fringe patterns observed in different standard specimens, and this is reproduced
here as Table II, to provide a guide for the reader who is actually involved in
K-determination using isochromatic fringe patterns. It is worth mentioning that
the least squares method, by utilising data from a global field is preferable to a
single-point, apogee-type method, and is likely to give more reliable results. It
is also the only method available which permits the simultaneous determination of
more than three parameters.

The increase in complexity of the analysis for a constant speed running crack
(Irwin, 1980) is moderate. For the case of a non-uniformly propagating crack, the
invariance of the higher order terms has not been established to date. Some
preliminary results on the variation of higher order terms with crack extension
may be found in Rossmanith and Irwin (1979) and Chona, Irwin and Shukla (1980).
Further work in this area is currently in progress.

TABLE II Characteristic Features of Fringe Patterns in Standard Test Specimens*
Loop Tilt Loop Shape a and B Values K-field Specimen Type
Highly Forward Slim a<0,B<O SEN
Forward Moderate a <0, B=0 Increasing SEN
Forward Standard o0, B<O SEN
Straight Up Broad a <0, B<O MCT
Straight Up Standard a =0, B=0 Gradually MCT
Slightly Moderate © =0, 850 Decreasing MCT
Backward
Backward Slim a >0, B8>0 RDCB
Backward Standard a >0, B=0 . RDCB
Highly Decreasing
Broad a>>0, B <O RDCB
Backward

* - Adapted from Rossmanith and Irwin (1979).
Note: The influence of increasing crack speed is primarily to increase the tilt.
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