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ABSTRACT

The new developed load-sequence model for fatigue crack growth takes
nonlinear effects such as retardation, acceleration and multiple load
interaction into account. Working on a cycle-by-cycle basis the model
uses a modified stress intensity range in the normal crack propagation
law. The modification is made by multiplying aK by an acceleration and
a retardation factor which both are governed by the development of
elasto-plastic boundaries obtained under small scale / strip yielding
assumptions.

After being successfully applied to simple irregular load sequences,
e.g. single peak overloading (Fihring, 1980), the model which uses
only basic material data is now being checked against a realistic load
spectrum. Detailed information on the comparison of test results with
crack growth predictions after the conventional linear theory as well
as the load-sequence model is given which exemplifies the improvement
in prediction accuracy of the new model.
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INTRODUCTION

The conventional cycle-by-cycle crack growth analysis is based on the
assumption that the increasing part of a full cycle causes the same
crack growth increment as a constant amplitude (CA) cycle of equal mag-
nitude. From the fact that only quantities of linear elastic fracture
mechanics are used the terms "linear theory" or "aK method" are in use
for the conventional prediction technique when applied to spectrum
loading. Figure 1 shows a cut-out of a typical load-time record and,
schematically, the related experimental crack growth curve. At two
distinctive events the crack growth rate as expected after linear the-
ory is compared with the experimentally observed crack growth rate.
One event is characterised by a retardation, the other one by an accel

eration of the crack growth. With spectrum loading numerous accelerations

and retardations interact and superimpose each other. Both these non-
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Fig. 1 Nonlinear crack growth effects

linear effects have been known for many years, however, difficulties
arigse if retardation or acceleration are to be quantified under gener-
alised conditions. By linear theory, the crack growth life of most
practical cases is drastically underestimated, i.e. by a factor of 4
and above. To take this into account several retardation models had
been established in the past, e.g. the Wheeler (1972) and the Willen-
borg (1971) model. However, those models have the disadvantage that
they must be adjusted for each particular problem area. In fact, the
constants they use are material and load-history dependent because
the models neither account for acceleration effects nor for multiple
load interaction. Both features are incorporated in the new model.

Table 1 gives a summary of three crack growth models on which the
author worked. The table is arranged from the left to the right hand
side in a decreasing order of physical relevance. The local strain
model (Seeger, 1973) as well as the effective stress range model
(Elber, 1971) which both account for the important fatigue crack clos-
ure mechanism were successfully used for basic studies (Filhring, 1977).
However, cyclewise continuum mechanics analyses of the parameters Avg
and U are too expensive when considering spectrum loading. On the
other hand, the interrelations between the characteristic parameters
and the loading, geometry as well as the uniaxial material properties
are so complicated that it is unlikely to find qualified approximation
functions for the whole variety of practical problems. Therefore, the
load-sequence model was established being a simple but effective gen-
eral scheme which builds on closed parameter solutions under small
scale / strip yielding assumptions.

As the key issue of the new model approach a modified stress intensity

range AKLS is introduced which shall describe the influence of all pre—'

vious load cycles on the current damage state
AKg =Q "AK =Q_ -Q -AK (1)

The modified stress intensity range replaces the conventional AK in
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TABLE 1 Summary of Crack Growth Models
Crack Growth Model Local Strain | Effective Stress Range U.oud Sequence Factor ]
. da = a da = n da n
ga_g. L4 C-(U.,-AK 2d _cia. AK
Constant Amplitude an C-Avgca N (Uey-AK) T C-(Q. . AK) o
(R=const.) Bv,- AK:" AK g é’UcnfC [or Forman]
Av,: Displacement U: Effective Stress Q: Load Sequence Factor
Governing Variation of Range Ratio C=C(R) (Paris)
Variable the Crack Tip U= AK 4/AK = f(R)
Material Element
AK: Stress Intensity Range (LEFM)
X — (Experimental Measurements) Q. -1
i =fELaiculations C(R)fromCAE-x eriments
through — Dugdale Calculations P
Spectrum < n = G _xigd
Laating Aa=C-Avy\s Aa=C(U gAK) Ba=C-(QgAK)" (oo
QuemUys/Ucy [or Forman]
Variable (as above) Closed Solution
Obtained Very Expensive Based on Structural
through Mostly not Performable and Material Data Only
1

the crack growth law. It is assumed a product of two factors: an accel-
eration factor Q and a retardation factor Qp which both depend only

on the applied sequence of loading. At each load cycle the following
two questions concerning the crack growth increment have to be answ-—
ered. First, which contribution results from treating the cycle as

load history independent ? - i.e. considering a CA history of equal
amplitude and stress ratio. Second, how much this contribution must

be enlarged or diminished due to the particular load history ?

Apparently - and guite intentionally - the present approach is built
around the CA crack growth law (where Qgz=Qr=1), i.e. all micro-mechan-
ical and environmental properties of the material in consideration are
assumed to be condensed in the CA data. As a consequence, the more
representative the input material constants C, n for the actual appli-
cation are, the better is the estimation accuracy for spectrum loading.
In Table 1 certain interrelations between the Elber model and the
load-sequence model are indicated which will be illuminated in the
following sections where the formulae for the acceleration and retar—
dation factor will be derived.

RETARDATION FACTOR

Pigure 2 schematically shows the result of an elasto-plastic strip-
yielding analysis of a centre cracked specimen subjected to single
peak overloading (Fiihring, 1977). Depicted are the parameters AVg,
and U (as defined in Table 1) with crack extension after overload
application as well as the development of plastic zone sizes w at
maximum load. Non-regarding crack closure the local strain described
by oavg was always greater than that expected from pure CA loading
(representing linear theory).Inserted into the local crack growth law
the simple analysis without crack closure yields that crack growth
will not be retarded but merely accelerated after the overload which



1826

ICruck Closure Anqusisl

Av,

e

PR Acceleration 2
C.A.

Retardation =

CA\ _———=—"

e \\\\ﬁ”<<:—f”'\\LS

rack Closure

Aa Aa
Fig. 2 Analytical parameter development after an overload

stends in apparent contradiction to common experience. In fact, AVa
values that correspond to the observed retardation effect are only
obtained if crack closure is taken into account as shown by the lower
left hand curve which then comes to lie below the respective CA curve.

The similarity of the U-ratio and the w-size development, see the
right hand curves in Fig. 2, indicated the way how to establish the
model approach. The idea behind was that the retardation effect of
any type of a high-low sequence can be expressed by a ratio of two
plastic zone sizes instead of the effective stress range ratio: one
of them being the monotonic plastic zone size, the other being the
plastic zone size as affected by the sequence of loading. The prop-
osed formula reads

Qr = i o.LSlwo.CA/“—R) (2)

For cycles with a minimum to maximum load ratio R=5y/So <0 the
(1-R)-term in expression (2) must be cancelled. Furtheron, only Qr-—
values less or equal to one are considered. The Dugdale (1960) form-
ula of the plasic zone size at the upper (lower) reversal points of
CA loading reads
2
T K, T AK
@WocA™ E (g‘:) Wyca™Tg (zay) (3)

where K, is the stress intensity factor at maximum load and Gy is
the yield stress of the material

G, =0, for plane stress, G,=250, for plane strain (4)

The plastic zone size being affected by the load sequence is (see:
(Filhring and Seeger, 1979, Fihring, 1980) :
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Aa: 2
gt g - (5)
where
ba;=0;-a, (6)
T K-K, 2
Dim g 25, ) v

Subscript i refers to the i-th reversal point of the load-time func-
tion. Subscript m refers to the memory element m® that is valid for
the current state of stress. It is obtained by checking all active
memory elements successively until the inequality

Clm'*'wm> ﬂi*wi (8)

is being fulfilled where am, wm denotes the crack length and plastic
zone size, respectively, of the memory.Egns. (5) and (7) can be used
for upper load reversals (wWy,1,5: tensile plastic zone size, odd num-
bered) and lower load reversais, as well (Luu LS compressive plastic
zone size, even numbered). The damage of cyclés lying fully in com-—
pression is neglected. For cycles with lower reversals in compression,
Sy <0, the plastic zone size is to calculate using a corrected minimum

load
5, -01-{0201-R1%08) s, (9)

ACCELERATION FACTOR

Figure 3 shows a low-high block sequence being the most typical (but
not the only) event causing acceleration. Again, continuum mechanics
was able to furnish the rationale for this effect only when taking
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Fig. 3 Crack growth acceleration, analysis and model approach
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fatigue crack closure into account. The analytical development of
the crack opening load after the loading step is schematically ind-
icated by the circles in the load-time function. The opening load
approaches the stable level of the second loading block only grad-
ually instead of jumping at the very change of loading. In terms of
the effective stress range ratio U drawn in the diagram below we
have a transitional curve Urs. Its parameters are the initial value
Up and the crack length increase Aa over which the growth rate is
affected. Since the acceleration effect has not yet been explored so
thoroughly as the retardation effect very few information on U as
a function of crack extension is available. That was the reason why
an empirical constant, namely Cg, had to be introduced into the model
for scaling the function of the initial value Ug. Fortunately, Cg
turns out to be a material constant. The final expression for the
acceleration factor reads

Q =1+C1-R-(1-YAa/m) (10)

Only Qg-values greater or equal to one are congidered. As key assump-
tion, the affected crack length, i.e. the acceleration influence zone
was taken to be equal to the length of the contact zone A . The con-
tact zone is that part of the crack surface where crack closure at
minimum load occurs (Fiihring, 1977). The bars in Eqn. (10) are used
in connection with spectrum loading. Then, a stress ratio of an "equi-
valent" CA loading R=Sy/S, is defined with Sp (Sy) being the average
maximum (minimum) load within the acceleration zone. The acceleration
starts at each load cycle the maximum load of which forms a plastic
zone being more than 10% larger than the average plastic zone

Wy cp> 110w, oy (11)
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Pig. 4 Geometrical cases and states at plastic limit load
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The extent of the contact zone of the equivalent CA loading can be
approximated by

= (125 (1-a/x "+ 150-RNS, /5, )&, (1R (12)

with Sy being the plastic limit load with respect to the current
crack length and xp, being the coordinate of the elasto-plastic boun—
dary at limit load. If the A-value calculated according to &qn.(12)
exceeds the crack length, then A=a is used. Tigure 4 illustrates the
stress states at 1limit load for all geometrical cases that have been
implemented in the computer programme up to now. In the figure the
expressions for xy and Sy of the three point bending (B3P) specimen
are given as an example. The others can be readily derived by ful-
filling the equilibrium conditions.

PRACTICAL APPLICATION OF THE MODEL

Table 2 shows the material data of the numerical examples as taken
from Sippel and Weisgerber (1975) except of the just mentioned Cg-
value and the exponent A. A=1 means that the normal Forman (1966? law
was applied where the crack growth increment per cycle reads
C-AK g
B il o (13)
11-R)-K -AK g

For a better description of the mean load dependence the author intro-
duced an exponent n#£1 for the (1-R) term in Eqn.(13). This modified
Forman expression was used with the alluminium alloys 7050 and AZ75.
For 7050 a variety of CAtest data exist enabling a proper adjustment
of n,C and n while very little information on the R-ratio influence
of AZ75 exists. Therefore, n was assumed equal to that of 7050. As to
the recommended Cg-values in the table (held constant for all invest-
igations of the same material) it can be stated that AZ75 and 7050
show no acceleration behaviour whereas aluminium 7075 exhibits a pro-
nounced acceleration behaviour; the Cg-value is 0.4 being the same as
for aluminium 2024,

TABLE 2 Mechanical and Fracture Mechanics Material Data (N¥,mm)

Code | Material Semifinished Product |Mechanical Properties Spgcimen Fracture Mechanics Properties
Type Thickness 9, oy thickness K¢ C n n C,
A AZ75 Forged Plate 60 476 401 6 2423 3.8-10'5 1.67| 0.8-0.4R | O
Bl 7050-T73651 Plate 100 505 440 6 2227 2.00-10:g 2.41 1 0
B2 * " o " " 6.63-10 ~2.63| 0.8-0.4R | 0
-8
1 i t 150 523 457 6 1876 |6.35°10_52.57 1 0
22 L Nﬁ 4 L " " 3.65-10 7 2.30| 0.8-0.4R | 0
-7
7075-77351 90 462 382 2.5 1920 14.21-10_g12.25 1 0.4
o PR o " " " 6 1780 |3.11-1073(3.00| 1 0.4
D3 . " " " Y 9 1600 |5.75-10 “{2.91 1 0.4
E1 | Ti6A14Vann | Forged Plate 85 1001 959 2.5 4480 2.04-10:2 2.36 1 0.1
£2 Y 4 L] " " 5 3490 2.29-10_1c2.69' 1 0.1
E3 * & " . " 8 3688 {2.27-10 "13.35 1 0.1
F Ti6A14Vann | Rolled Plate 83 908 847 5 4437 3.69-10'7 2.32 1 0.1
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TABLE 3 Fighter Spectrum srack Growth Prediction (N, mm)
Case | Material| Specimen |Plane Strain (1) Half |Maximum Flights to Failure Life Factor
Code |Thickness|Plane Stress (0)|Width|Spectrum Load N¢

b Experim.|Linear Theory] LOSEQ |Linear Theory] L0SEQ
1 A 6 1 80 196 5300 1020 3010 5.2 1.76
2 Bl 6 1 80 | 19 7850 1780 8780 4.4 0.89
3 B2 " " " L 2 1370 . 7780 5.7 1.01
4 Cl 6 1 80 196 6770 1580 8780 4.3 0.77
5 c2 & ¥ = i " 1410 6895 4.8 0.98
6 D1 2.5 0 | 80 | 273 1260 580 1400 2.2 0.90
7 " " " ] 196 6950 1660 3895 4.2 1.78
8 D3 9 1 80 | 196 5100 1780 4780 2.9 1.07
9 D2 6 1 80 273 1100 695 1895 1.6 0.58
10 " " " L) 196 5360 2210 6095 2.4 0.88
11 " " " L 196 o 4800 2295 6380 2.1 0.75
12 " " - | (LT 3680 2380 4580 1.6 0.80
13 " " " » (196) 2820 2495 3000 1.1 0.94
14 El 2.5 0 80 549 1650 325 1260 5.1 1.31
15 " " ] L 373 6300 1095 4180 5.8 1.51
16 E3 8 1 60 373 3850 980 4895 3.9 0.79
17 £2 5 1 80 549 1160 194 650 6.0 1.78
18 " . " " 373 3220 695 2980 4.6 1.08
19 " " " " (310 2320 780 1495 3.0 1.55
20 " " " L (373) 1600 885 1170 1.8 1.37
21 F 5 1 80 | 373 5110 780 2780 6.6 1.84

s 73

* Truncation of Loads <0 ** Truncation at 85% ™ Truncation at 72.5% Truncation at 58.5%

All the cases listed in Table 3 weré experimentally tested on centre
cracked tension specimen by Sippel and Weisgerber (1975). The load-

ing was a fighter spectrum with 200 flights consisting ofii4226 cye-
les in a period. The comparison of observed lives to predlcted_llves
is made on the basis of flights to fgilure. Jrack growth life is de-
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fined by propagating a crack from a half length of»2.5 mm to criti-
cal length which depends on the maximum spectrum load applied and
the fracture toughness Kc. Predictions are made by using the compu-
ter programme LOSEQ based on the lgad—ggguence model and by the
linear theory with AK instead of 4Kpg 1in Eqn.(13), as well. The
assumption concerning the stress state was: plane strain for all
cases except of the 2.5 mm thin sheets.

The computational cases 2 and 4 carried out with the Forman constants
as published by Sippel and Weisgerber are to compare with cases 3 and
5, respectively. The experimentally observed lives (i.e« 7850, and
6770 flights) are predicted with more accuracy Wwhen using the modi-
fied Forman law (7780 and 6895 flights, respectively, instead of

8730 flights in both cases 2 and 4). Additionally, the comparative
analysis shows that the factor of observed to predicted 1life accor-
ding to linear theory obviously is sensitive as to the CA law apptied.
Figure 5 illustrates the prediction accuracy of LOSEQ in comparison
with the linear theory. The symbols represent the life factors of all
21 cases investigated. The advantage of the new model can be readily
seen: not only the probability curve is centered at a life factor of
~1, but the slope of the probability distribution is as steep as
with many simple CA crack growth predictions ( T=P1o¢/P9Oﬂ=1:2.5).

On the other hand, the large scatter in life factors from linear
theory (T=1:4.8) is very typical with spectrum loading cases.

Figure 6 shows a plot of observed versus predicted flights represen-
ting the whole crack growth period from about 0.15 ff to final fail-
ure. All symbols of a single computational case are connected by a
line. Observing that all lines in Fig.6, those predicted by LOSEC

and those after linear theory, are approximately parallel to the dia-
gonale it can be stated that the life factors as given in Table 3 are
representative for the whole crack growth period and not only for
final failure. This fact is of great importance when using the LOSEQ
prediction for the estimation of inspection intervals of real struc-
tures.
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Fig. 7 Effect of load spectrum modifications (7075-T7351)

In Fig. 7 the crack length versus number of fligths curves for the
modified spectrum loading are drawn (the modifications are denoted
in Pable 3). It is a good example for the load sequence influence

on fatigue damage. Linear theory gives the same answers for all four
variations while the real crack growth behaviour is affected is typ-
ically affected by truncations. The observed crack growth is model-
led fairly well by the new model which yields approximately the same
accuracy for all modifications.

REFERENCES

Dugdale, D. S. (1960). J. Mech. Phys. of Solids, 8, 100-104

Elber, W. (1971). Damage Tolerance of Aircraft Structures. ASTM -
STP 486, 230-242

Forman, R.G., V. E. Kearney, and R. M. Engle (1566). Trans. ASNE, J.
Basic Eng., 459-

Fihring, H. (1977). Elastic-plastic crack closure analysis of Dugdale
crack plates based on fatigue fracture mechanics (in german).
Report 30, Institut fur Statik und Stahlbau, TH Darmstadt

Fihring, H., and T. Seeger (1979). Fracture Mechanics, ASTH STP 486,
144-167

Pilhring, H. (1980). Proceedings 2nd Conf. on Numerical Methods in
Fracture Mechanics, Swansea, 645-650

Seeger, T. (1973). A contribution to the analysis of static and

" cyclic loaded crack sheefs apnlying The Dugdale-Barenblats model
{in german). Report 21, Inst. fur Statik u. Stahnlbau, TH Darmstadt

Sippel, X. 0., and D. Weisgerber (1975). Proceedings &th ICAF Sympo-—
sium, Lausanne, 7.1/1-55

Wheeler, 0. E. (1972). Trans. ASWE, J. Basic Eng., 181-186

Willenborg, J., R. M. Engle, and H. A. 7ood (15/1). A crack growth
retardation model using an effective stress concept. TH71-173R,
TS=ArB, Jhio

J. Mixed Mode Fatigue


User
Rettangolo


