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ABSTRACT

When laboratory tests are performed on small scale specimens made of metals exhibiting
low yield stress and high fracture toughness their ductile behavior inhibits or totally
impedes growth of brittle-like fractures. When, however, the same metals are used to
manufacture piping systems or pressure vessels of large dimensions, the so called

tsize effect" is observed; the initially stable cracks develop into an unstable fracture
which rapidly propagates across the thickness of the component leading to a total loss
of structural integrity. Conditions under which such transition from stable to unstable
crack propagation may occur in ductile metals are studied in this work. An extension
of the early version of the final stretch model to other geometrical and loading config-
urations is suggested, while the restrictions on the amount of plasticity which precedes
the onset of crack growth and accompanies spread of stable ductile fracture up to the
point of global failure are removed. The differential equations defining the material
resistance developed during the €arly stages of ductile fracture process are derived from
the concept of "final stretch". The model suggests a certain near-tip distribution of
displacements associated with a quasi-static Mode | crack such that the resulting strains
are logarithmically singular at the crack tip.

The final results are of closed form and they are analogous to the numerical data obtain-
ed by other researchers on the basis of the incremental plasticity theory. Similarities
between the present results and the solutions due to Paris and coworkers, Rice and
coworkers as well as the most recent data obtained by Shih's group at the General
Electric Company are pointed out.
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Existing linear elastic fracture mechanics and J-integral analyses are well suited for
safety assessments of high strength-low toughness materials. These analysesapply
only to the onset of crack growth, which is usually tantamount to crack instability and
structural failure in that class of materials. However, this is not the case for the low
strength, higher toughness grades when crack instability may be preceeded by exten-—

sive stable crack growth under rising load. Here, a substantial margin of safety may
exist even when the onset of crack growth is imminent.

This paper describes research leading to a ductile fracture mechanics methodology de-
signed to treat two-dimensional large scale yielding and stable crack growth problems.
The line plasticity model of a moving crack of Wnuk (1972-1979) is used to obtain pre-
dictions concerning the material toughness associated with the preliminary crack exten-
sion (R-curve) and to calculate the critical parameters, i.e., load and the crack size,
at which a transition to unstable brittle-like fracture will occur. One important finding
of this work is that parameters truly reflecting the state of crack tip process zone are
not functions of the extent of stable crack growth when the mode of fracture (full shear
or flat) remains fixed. The "final stretch" suggested by Wnuk in 1972 or the "crack tip
opening angle" could be used, for example, as such material characteristics, constant
over the subcritical range of crack growth, and obtainable from a series of relatively
simple tests which involve direct measurements of the material toughness and the slope
of the resistance curve at the onset of stable crack growth. The possibility exists, there-
fore, that useful, stable growth parameters can be evaluated from the state of the crack
tip at the onset of crack extension. The plastic stress relaxation occurring at the tip of
a quasi-statically progressing crack, and the redistribution of strains ensuing within
the end-zone adjacent to the crack front renders a stabilizing effect on a spreading
fracture. In fact, the change in the nature of plastic strains encountered near the crack
front is distinctly reflected by the dominant term which changes from an (I/r) type,
observed for a stationary crack, to a log (I/r) form, as the crack tip is approached.

The analytical investigation of extending cracks in near-yield or post-yield situations
is difficult mathematically. Some progress has been made in the Mode 11l or anti-plane
strain case by McClintock and Irwin (1965) . Although the tensile or Mode | case has
received a great deal of attention, Rice (1968, 1975, 1978, 1979), Cherepanov (1974),
Wnuk (1972, 1974), Amazigo and Hutchinson (1977), Paris et al. (1977), the analytical
solutions produced to date are usually restricted by the requirement of plastic strain

field being contained within the surrounding dominant elastic field, i.e., to the so called
small scale yielding" situation. Fracture occuring under the large scale yielding con-
dition has been discussed in some detail by Wnuk (1979) and Smith (1980). Both inves-
tigations were based on a highly idealized line-plasticity model modified to account for

a moving crack. Here we intend to explore the physical assumptions underlying this
model and to present a brief deriviation of the governing equations for 2D and 3D geo-
metries consistent with the final stretch concept. Implications of these results will also
be discussed.

Numerical investigations of stable growth done in Europe by Kfouri and Miller (1976),
de Koning (1977), Andersson (1973), Tilley (1978) and in this country by Shih et al.
(1978), Kanninen et al. (1977) and many other authors seem to point out a number of
parameters suitable for the characterization of stable fracture ensuing upon the onset of
fracture in a fully plastic range. One such parameter, as suggested by studies of

de Koning (1977), Andersson (1973), Shih and et al (1978), Kanninen et al. (1977) is
the crack tip opening angle (CTOA). It may be shown that the basic physical concepts
underlying Wnuk's model of finite stretch (1972, 1974) and the criterion of critical

1743

opening (say 5) observed at a fixed distance from the crack tip (say A), as used by
Rice and Sorensen (1978) in their studies of a quasi-static plane strain crack monotoni-
cally extending in an elastic-plastic medium, are essentially same. Both ideas are
indeed equivalent to the concept of the critical crack opening angle. Somewhat unexpec-
tedly, and despite the entirely different analytical approaches, the end results of both
papers, i.e., that of Wnuk (1974) and of Rice and Sorensen (1978) turned out to have
the same mathematical form (the pertinent equations in both papers are identical within
the accuracy of a numerical constant).

Experiments of Griffis and Yoder (1976) and Clarke et al. (1976) and also the later
studies aimed at direct measurement of the CTOA by the crack infiltration technique,
cf. Garwood (1977) and Willoughby (1978), seem to indicate that the wedge-shaped tip
of a slowly growing crack retains the angle measured at its apex substantially constant
during slow crack growth. This observation supports the assumption of a constant
crack opening angle. Some researchers have indicated that under monotonic loading
the nominal J integral continues to rise steeply with crack advance. It would be, there-
fore, overly conservative to base a limiting strength prediction on J|~. Accordingly,
the experimentally determined curve of J plotted vs. an increment of crack growth,
Do, has been suggested as a means for predicting the stable/unstable transition occur-
ring in the ductile fracture process. Hutchinson and Paris (1977) stated limitations of
validity of such J-resistance curve through an inequality

R‘;Xb > J/(dJ/da) 1.1)

Here, R _and b are certain linear dimensions. The first one denotes the radius in which
the “HR&" (Hutchinson-Rice-Rosengren) stress and strain fields at a distance r from the
crack tip are dominant, i.e.,
s = (J/r)N/“ +N)

0<r<R 1.2)
1/(1+N e g
al b ey WE o

~

N

where N is the work-hardening exponent in the power-law hardening material ,T= ’
in which Tand { denote the von Mises equivalent shear stress and shear strain mea-
sures. The quantity R, was shown to scale approximately with the maximum radius of
the plastic zone for the small scale yielding situation (ssy), i.e., R = .16 EJ/oZ in
where o, denotes the uniaxial yield stress, cf. Rice and Sorensen (?978]. In the large
scale yielding situation (Isy) R, scales apéroximately with overall size of the specimen,
measured by the uncracked ligament size b, as stated in the expression (1.1). The
physical assumption underlying inequality (1.1) is the requirement that the amount of
proportional straining of the HRR type due to increments in J, dominates over the non-
proportional straining due to increments in a., i.e.,

4 . da (1.3)
T R,

This is satisfied when the quantity R, is large enough to fully envelop the crack tip
process zone (sayA) which provides the length-scale for stable cracking, i.e.,
da.=a.. Since this process zone size A is typically of the same order of magnitude as
the crack tip opening displacement at the onset of growth, i.e. ,A"—'Sini = .65J|c/0,
(the factor .65 is a result of numerical work based on finite element approach by Rice
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and Sorensen (1978) and McMeeking (1977) ), the requirement (1.1) can be re-inter-
preted in terms of a tearing modulus

T, = (E/6) (d)/da) (1.4)
suggested by Paris, or a tearing modulus

Ts = (E/0) (5/4) (1.5)

suggested by Shih et al. (1977).

Applying Wnuk's model of final stretch to a Mode | crack Smith (1980) have shown that
both the moduli, as defined by eqgs. (1.4) and (1.5), become identical provided that
slow crack growth occurs in a solid of low strength and high tearing resistance

(at T;>50), and that the extent of this growth is small vs. the initial crack size and
other dimensions of a specimen. Under these restrictions the quantity dJ/dacan indeed
be identified with the initial slope of the J-resistance curve, (dJ/do.)i, and regarded a
material property as suggested by Paris and coworkers (1977) . In contrast, the second
tearing modulus given above, Tg , remains invariant to the amount of crack extension
and, therefore, it provides a more fundamental material characteristic associated with
ductile fracture. This observation is confirmed both by the existing experimental and
numerical data derived by finite elements approaches to a quasi-static crack problem.
Thus the condition of failure based on the CTOA parameter or, equivalently, on the
final stretch concept appears to be not only physically sound but also free of the restric-
tions that need to be imposed to validate Paris' concept of a constant slope of the
J-resistance curve.

Briefly, the validity of the J-controlled stable crack growth is affected by the strength
level (0,/E) and ’Ehe tip opening parameter (CTOA or g/A) , given as the ratio of the
critical opening & observed at a characteristic near tip distance A . Low values of
strength level (0,/E) and the tip opening parameter (§/A) are required to validate any
theory of quasi-static tensile crack based on a J-concept. Low strength/high toughness
implies a steeply rising J versus change in crack length curve and an impossibility of
attainment of the terminal instability of fracture developed under conditions of well
contained yielding. This considerably restricts the scope of applications of the presently
existing analytical solutions all of which describe in fact the small scale yielding stress
and strain fields associated with an advancing crack.

Analysis given here, which is based on the final stretch concept suggested by the
author in 1972, provides equations governing quasi-static extension of a tensile crack
contained in either partially or in a fully yielded specimen. These equations are

dR/da= (R} + (¢) {M-¢-F} R=R@.¢=¢R/), =F(4
75'= A¢>/01(R/a_) (1.6)

for a resistance curve represented in the (R,a) plane, and

dp/da=k{M- E@.a} 1.7)

for a material resistance described by the contour integral dependent on the instantan-
eous crack lengtha, J:JR(C() . The length R scales with the maximum extent of the
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plastic zone developed ahead of the crack front, while functions 4>and éare related
respectively to the crack tip opening displacement u.. (@ and the gradient of the dis-
placement u (x1 ,0) evaluated at a small distance xq1= rom the crack tip. Two constants
M (=(xE. /88 (g/A)) and & (=8n :"2/7tE1] incorporate the effective yield stressz,the
elastic material properties, E and v, an empirical factor n (=J/ ti ), the final stretch
S and the size of the process zone A over which the final act of fr'ac?ure takes place
(one may think of A as a step size for a quantum-like crack extension). The constant
M is shown to be identical within a numerical factor with Shih's tearing modulus
T& = (E/6’0) (3/4) , while the product Mx(=nc:Y(§/A)) is shown to be proportional to
the tearing modulus suggested by Paris, T = (E/sg ) (dJR/do), if the slope dJg/da

is interpreted as the initial slope of the J-resistance curve.

The differential equations defining the material resistance functions R (a) and the J_ (@),
as given above, are valid for arbitrary crack and loading configurations. Their use is
illustrated by a number of examples involving traction free (case a) and pressurized
(case b) cracks either under plane stress or plane strain condition (2D problem) or in
an axi-symmetrical configuration of a disc-shaped crack (3D problem). To make the
problem susceptible to a mathematical treatment a modified model of DBCS type is
employed, but it should be emphasized that the basic physical concept underlying these
considerations, i.e., the constancy of the final stretch or, equivalently, the invariance
of the crack tip opening angle (CTOA) during slow crack growth, remains valid in a
general sense, irrespective of a particular choice of the computational approach. The
solutions based on the DBCS model suggest the following expressions for the dimension-
less functions, ¢ (x) and & (A , a); in which x denotes the ratio R (a)/a:

2D Crack

log (1 +x) 2 case a
‘P(")={ (1.8)

x{l+2|og (/1_+; + \/_x_)} case b
?L‘Log[ 220-(75:)2" ]
@(A,a): (1.9)

case a

LZQ/O3<_L'—6A3)—<-> +’><<|+ X) case b
3D Crack 1
CP( ; x (1+x) case a
R) = (1.10)
{x{1+x+ )x(2+x)} case b

4Log(@a/a) = [1+ (x(1r(24x)) "]
Plts2) =Yoo fiex+ K BTN () - 1 - (e0)ee]

case b

The corresponding J resistance curves are defined by certain non-linear differential
equations which are ﬁerived from the forms (1.8 - 1.11) and the governing equation
(1.7). These equations can be considerably reduced if two limiting cases are
considered; they are (1) contained yielding (x < 1), and (2) large scale yielding
(x>>1). We shall use the abbreviations "ssy" to denote the first one and "Isy" to
designate the second one. When the appropriate limiting procedures are carried out for
very small and very large R/a ratios, one obtains these representations

(1.11)
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2D Crgelgucasea with an index "A" denotes the intensity of the external field).

alj 4 62/ 7<E.) log (J_/J)) ssy . One of the important byproducts of the theoretical considerations of this sort is the refine-
R P ¥ 1 ss. R , ment of Paris' concept of tearing modulus and its applications in assessment of ductile
a]a, (1.12) . fracture toughness. The methodology of ductile fracture derived from analyses of
e (S/A) - (Lms";/n Ei) 90@(25-:(1/13) quasi-static crack extension in fully plastic range, i.e., either under the near-yield or
0 : Isy post-yield condition, is currently being applied in design of piping systems and thick—

walled pressure vessels in reactor technology.
2D Crack, case b
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Fig.
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An artist's view of the equilibrium state which exists at the crack tip.

Note that the greater is the effort expended by gentleman A, who represents
the external field, the stronger will be the resistance put up by

gentlemen R, who symbolizes the material response. For a stable crack
one would expect the demand for the energy flow into the crack tip, dJgda,
to exceed the available rate of energy supply, QJA/aa, or shortly,

A > 0.



