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ABSTRACT

High strain fracture analysis deals with the growth of a small crack
within a large zone of high loading strain which may monotonic, cy-
clic or time-dependent creeping. In this paper COD and J integral
analysis and experimental calibration for high strain crack problems
are given and compared. Attention has been drawn to the difference
between general yielding and ligament yielding, and especially on the
ligament yielding disturbance in the experimental calibration of COD
and J-integral for high strain fracture analysis. The applicability
and limitations of the analysis in predicting the fracture and 1ife
of specimens and engineering components with the small pre-existing
crack in the region of high nominal strain under monotonic, cyclic
or time-dependent creeping condition are discussed.
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INTRODUCTION

A series of fractures involve the growth of a small crack within a
large zone of high loading strain which may be monotonic, cyclic or
time-dependent creeping. This type of fracture may be denominated by
"high strain fracture" and is often met in brittle fracture of pres-
sure vessels and other welding structure, as well as in low cycle
strain fatigue and creep fracture of machine components where growth
of small pre-existing crack within large strain-cycling or creeping
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gone may significantly reduces the strength and 1life of the compo-

nents. However, in contrast to the extensive investigation on speci-

mens with deep crack where ligament yielding occurs, relatively 1it=-

tle attention has been paid to general yielding specimens in which a

small crack is fully encompassed by large zone of gross yield expan-

ding all over the whole specimen. In this paper, high strain crack

problems are reviewed using the formulations for pure power hardening

model, COD and J-integral formulas of small crack within area of high

nominal strain for elastic-plastic materials are discussed and com-

pared with the results of experimental calibration. The above analy-

tical and calibrating results are then used for analysing crack growth
rate and life of specimens with small pre-existing crack under plastic
fatigue and creep condition.

FORMULATION OF HIGH STRAIN CRACK PROBLEMS

High strain crack problems are best formulated by using the incompres-
sible, pure power hardening model (Goldman and Hutchinson, 1975; Shih
and Hutchinson, 1976) with stress-strain relationship

£ =oag” (1)

in simple tension and its generalization
n-i

&= 0,5y (2)
for complex stress-strain state.
If boundary value problems based on (2) are considered where the com-
ponents of all the boundary stress vectors are proportional to a com-
mon load parameter, then as first shown by Ilyushin (1946) and dis-

cussed recently by Goldman and Hutchinson (1975) and by Tsai and his
coworkers (1977, 1978), the stress at each point in the body also va-

ries linearly with the load parameter and the functional form of the

stress-strain field solutions is extremely simple and suitable for
elastic plastic fracture mechanical analysis. Thus, for center crack
specimen of width 2b, crack length 2a, loaded by uniform stress re-
mote from the crack, the functional form of the solution is

gy= o -Gy(%aa/en) (3)
Ey= «a™ Ej(X/aa/b,n) (4)
y;/a = o™ &;(%/a,a/bn) (5)

Furthermore, COD and J-integral can be expressed as

§ = (o™ a- 8 (a/bn) (6)
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o =™ T a/m ) (7)

where § = up(0,0%)-u5(0,0=) is the crack opening displacement at the
center of the crack, but it has been shown in Goldman's paper (1975)
for engineering materials of common occurence with n>5, <+the COD a;
the center of the crack is a good approximation to the near-tip COD
The dimensionless functions §(a/b,n) and J(a/b,n) are dependent )
only upon the nondimensionalized geometrical parameter a/b and the
material parameter n, but independent of the stress O . They had been
calcul:t:g by F.E. method for various a/b and n. However, in order to
conver ese F.E. results into simple analytic e

for engineering use and to obtain tﬁe formu{as fo:pgiziiOZ:azﬁn:;:;::t
areas of high nominal strain by extrapolation, two significantly dif-
ferent types of yielding or distribution of strains due to the diffe-
rent geometric condition (values of a/b) of the specimens should be

recognized. Figure {1 shows the different schemes of strain di
stribu-
tion under two different geometric conditions. *

Uniform strain zone
1
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Strain concentration zone
(a) (b)
Pig. 1.

Iwo typical full yielding scheme for tension plate.
(a) Ligament yielding. (b) General yielding.

In the case of narrow ligament, due to the fact that the net section
stress at the ligament Opg4 = bG/(b-a) is apparently greater than
the uniform stress G remote from the crack, the strain concentration
zone will be located mainly in the ligament, thus we call it ligament
Yielding case. In the case of a crack in an infinitely wide plate (a/b
=0), due to the absence of the two side boundaries of the specimen

the strain concentration zones of the crack will entirely be envelo;ed
by a general yielding zone of uniform strain remote from the crack.

This type of yielding is denominated by "
sent paper. y "general yielding” in the pre-
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The difference in the expressions of COD and J-integral due to the
difference in, the distribution of strains should be found in the ex-
pression of §(a/b,n) and J(a/b,n) in equations (6) and (7). Thus,

in general yielding case as happens in the infinitely wide plate, a/b
-0, gwill be only dependent upon n and the expression (6) can be re-
written in the type of Wells' formula (note that & =og”™):

§ = 2mqaé (8)

A
where the shape factor of the crack specimen q is defined by q=8(n)/2m
and is only dependent upon the material parameter n. However, in the
case of strain concentration in the ligement, q= §(a/b,n)/2m will va-
ry strongly with the variation of the ratio a/b. Figure 2(a) shows
the results of F.E. calculation of the COD for center cracked plate
made of pure power hardening materials in the state of plane strain.
It is apparent that when a/b-+0, for engineering materials of common
occurence with n=5-7, §&/2raf = q+1 1is a good engineering approxi-
mation for pure power hardening material under general yielding con-
dition.
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N g ~ v |
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2 = _-eé:—-——""/
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Fig. 2. BExtrapolation of plane strain F.E. results to a/b=0
to obtain the shape factor q and Q for general yiel-

ding.
By interpolation of the small scale yielding solution and the above
fully plastic solution, simple estimates of COD for elastic plastic

materials under general yielding condition can be obtained. Thus, COD
of a through thickness crack of length 2a in an infinitely wide plate
under small scale yielding condition is given by DBCS-model:

Sel = i&Ea Insec(ZZ) = 8—5?"(%) ln:ec(—%?-’%ﬁ-‘ (9)
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where the yield stress 0, has been replaced by flow stress G to ac-
count for the stress elevation within the yielding zone by strain har-
dening and triaxiality, and §&,= O»/E, Eg = 0/E.

On the other hand, the fully plastic contribution of COD, SP' under
general yielding condition is given by the above result for pure power
hardening materials (with n=5-7, gq=1)

(10)

To interpolate over the entire range of yielding, we may take the sum
of the small scale yielding contribution 59( and the fully plastic
contribution 6,,, i.e. 8= 5el*5pv then we have (note that E'P-E—Ee(),

_ & £ ot 4 (G} &e
= sme, = £ L &5 - mlZ) lnsec(Z- 78| i

As the general yielding is not too deep, we may put fel/ & =/ and
6/6y = 1.15, then the Burdekin relation results:

8P= 2n'a.£,,

¢-—£€:-0.25 (12)

The above interpolating result for general yielding case is valid only
vhen no ligament yielding disturbance is present. However, in most
wide plate test condition, ligament yielding is hardly avoidable due
to insufficient smallness of the crack length to plate width ratio
a/b, or due to the presence of broad yielding plateau which implies
nonhardening or perfect plasticity with n+eo . In this mixed-mode
yielding case, the measured q>- &€ /&, curve demonstrates clearly four
stages of deformation as shown in Fig. 3 (Satoh and Toyoda, 1979; Tsai
and coworkers, 1978):

1. The small scale yielding stage.

2. The ligament yielding stage. In this stage, in terms of the
nominal strain & measured within the gauge 2y, the nondimen-
sional COD of the center cracked strip can be expressed as

o Qs i NE

P = 7@z, E(F)EZ*A b
and the slope of the ¢p - £/, curve is dp/d( € /&) = y/ma.
Due to the variation of the gauge length to crack length ra-
tio y/a, the measured curve ¢ - £/E, may locate above the
Burdekin design curve when y/ma >»1, as shown in Fig. 3, or
below the design curve when y/ra<i. Thus, the scattering
of the wide plate testing curves (- £/§,) above or below
the design curve can be explained as due to the disturbance

of ligament yielding with different gauge length to crack
length ratio a/y.
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3, The stage of spreading of the Liiders band or the initial yiel-
ding (corresponding to the yield plateau) in the remaining
parts of the plate with COD and ligament zone frozen.

4. The general yielding stage in the whole plate with power har-
dening. The slope of the curve ¢ - £/ in this stage 1is
dgp/a( €/E) = 1 for center cracked strip as predicted by
equation (10) and (11).

AAL

XAX
A

Fig. 3. Due to the ligament yielding disturbance and presence
of yielding plateau four stages of deformation are
present in wide plate test: 1. Small scale yielding.
2. Ligament yielding. 3. Spreading of Liuders band.

4., General yielding.

In actual engineering components surface crack is usually met. Theo-
retically, equation (8) also holds for surface crack in a semi-infinite
body of pure power hardening material, except that the shape factor g
should be dependent upon a/2c, and similarly, for surface crack in a
semi-infinite body of elastic-plastic material under general yielding

condition:
- ji - 14
4) af (A 0.25) (14)

Since no F.E. calculation has been done for surface crack under gene-
ral yielding condition, the applicability of the formula (14) and the
shape factor q can only be determined by experimental calibration.
Figure 4 shows some result of experimental calibration on wide plates
containing surface crack of various a/2c and a/t. The measured qb—-EA&
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curve agrees well with the formula (14) only when a/t<1/10 with
q=0.75 for surface crack of a/2c=0.11, in which local ligament yiel-
ding stage, that is, local yielding at the remaining ligament (t-a)
behind the crack is essentially absent. For the other two specimens
with large a/t, the local ligament yielding stage precedes the general
yielding stage and makes the ¢ ~E/E, curve to go high above the Bur-
dekin's design curve owing to the large gauge 1length to crack depth
ratio y/a.

Al-Alloy, 1/n = 0.19

©F Thickness t = 30 mm
Width b = 150 mm
o
S5
Eﬁ
Q4
w
_3_3 a/2e| q
2 0011 0077
41 0.23 | 0.T1
! 9]0.37]0.64
. . . , 3] 0.50 | 0.45
N 5 & T 8
€/€o

Fig. 4. Measured P- €/& curve and shape factor q for wide
plate with small surface crack of different geometry.

According to the extrapolating result of F.E. calculations given by
Shih and Butchinson (1976), for center crack in an infinite sheet un-
der plane stress state,

§ =[3.85.m(1-1/n) +4/n]otac” (15)

and the shape factor in eq. (8) and (14) should be
q =[3.85 n(1-1/n)+4/n ]} /27

which is somewhat larger than unity for n >5. However, for small sur-
face or edge crack within large general yielding zone of engineering
components where crack depth to thickness (or section size) ratio is
small, the stress state at the crack tip region is plane strain,
vhereas it is plane stress remote from the crack. The shape factor q
may have the value between the F.E. results of the two stress states.
Thus, it is valuable to conduct experimental calibration of COD versus
€/ &, under general yielding condition to obtain the actual shape fac-
tor q for various materials and crack geometry. Some experimental re-



1454

sults of the shape factor q for center crack, edge crack and surface
crack of various a/2c under general yielding condition are 1listed in
Table 1.

TABLE 1 Measured Shape Factor q for General Yielding

C/Mn Steel
1/n = 0.24

Aluminium Alloy
1/n = 0019

1.20 (a/t*=0.2)
1.50 (a/t =0.3)

1.20 (a/t=0.2)

Edge Crack 1.57 (a/t=0.4)

Center Crack 1.05 (a/t =0.2) 1.00 (a/t=0.5)

0.77 (a/2c=0.11)
0.71 (a/2c=0.23)
0.64 (a/2c=0.3T)
0.45 (a/2¢=0.50)

0.80 (a/2¢=0.2)

Surface Crack 0.75 (a/2c=0.4)

#Crack depth to plate thickness ratio.

Pormulation of high strain crack problems for elastic-plastic mate-
rials is most simple when the J-integral parameter is used. Thus, for
center crack strip of pure power hardening materials, equation (7) can
be rewritten as

J = 2110.!0’&8 (16)
where szde = of (=2

Eh{l
o 3]

for plame strain. Using the F.E. results of plane strain J-integral
for center crack strips of pure power hardening material calculated by

Goldman and Hutchinson (1975), curves of J/27’taf0'd£ versus a/b are
plotted in Fig. 2(b) for different values of n., Extrapolation to a/b

— (0 for infinite wide plate shows that at least for n=1-7, the shape

factor Q = J/2a (O4d€ -1 may serve a good engineering approxima-

tion for general yielding case.

)("—g-a')n“ and Q = 3(a/b,n)/[2n( u

N+t

Since equation (16) is valid not only for fully plastic material but
also for linear elastic material in which {gdf = O92E' and

J = Ta O‘Z/E', formula for estimating the J-integral of elastic-
plastic materials over the entire range of loading can readily be ob-
tained by taking the sum of the linear elastic contribution

Je, = 27Qa (0" de and the fully plastic comtribution

Jp = 2mQa fkfdfb The same equation (16) results with J=Je¢ +Jp
and df = 4§, +d€, . Thus, the simple formula (16) is applicable
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also for elastic-plastic material over the entire range of general
yielding.

Comparing formula (16) with the plane stress J-integral formula for
infinite wide plate obtained by Shih and Hutchimson (1976)

J = af[3.85 n(1-1/n)+ /n] ac™* (17)

we have Q = [3.85 n(1-1/n)+'n/n]-[ (n+1)/21!n] , which is somewhat
larger than unity for n=5=7,

Por small edge crack in a wide tension plate under general yielding
condition, plane stress J-integral can be obtained by measuring the
strain distribution along the side surface contour of the specimen,
The deformation density W = IO‘ d€ 1is then calculated using the
measured strain and G - & curve, and the integral _ﬁldy along side
surface contour can be calculated to yield the value of J=integral,
since there is uniform stress field remote from the crack, the con-
tribution of the contour integral along horizontal path remote from
the crack is absent. Some preliminary J-integral calibration results
on aluminium alloy (n=5.2) wide plate with small edge crack under ge-
neral yielding condition shows that formula (16) also holds with the
shape factor Q = 1.5~1.6 for a/t = 0.3, which is roughly equal
to the shape factor q in COD formula (8) for the same crack geometry
as shown in Table 1. Thus, it is interesting to point out that for
center crack and edge crack under general yielding condition the two
shape factor q and Q is roughly equal to each other.

Finally, although the two-dimensional of J-integral is meaningless

for surface crack, we can nevertheless define an applied or equiva=-
lent J-parameter by the following expression
n
I=(537)068 (18)
which appears to be a good approximation in two-dimensional case for

pure power hardening materials under general yielding condition and
can be obtained by comparing equations (15) and (17). For surface
crack, the physical meaning of the definition (18) may be intepreted
as follows. Along the crack border segment which is large compared
with the COD value, the near-tip field changes negligibly and is es-
sentially two-dimensional, the relationship (18) has its usual physi-
cal meaning that the defined J parameter determines the strength of
the crack tip singularity. Substituting (8) and (1) into (18), we
arrive at the following expression

I =(725)08 =27rqafa'd8 (19)

for the equivalent J parameter which determines the amplitude of the
HRR singularity at the segment of the crack border where the crack
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opening displacement 8 , the crack depth a, and so the shape factor q
for the surface crack are measured. It is easy to show that formula

(19) is a good approximation also for elastic plastic material over

the entire range of general yielding with d€=d € .+d€p. Thus, the

simple J parameter formula (19) can be used for aﬁnlysing the growth
of a surface crack provided the shape factor q is obtained by experi-
mental COD calibration as listed in Table 1.

CRACK TOLERENCE WITHIN AREA OF HIGH STRAIN

Critical crack-size analysis in areas of high nominal strain is a
practically important task for the prevention of brittle fracture in
pressure vessels and other welding structures. Before applying the
fracture criterion §= 8¢ to the evaluation of critical crack size,
it is necessary to establish the functional relationship between the
crack opening displacement § , the crack size and the nominal strain.
The relation usually employed is Wells' and Burdekin's formulas(Wells,
1963; Burdekin, 1971), which are empirical formulas deduced from wide
plate experimental data. However, as had been discussed above, wide
plates of different crack geometry (a/b and a/t) may produce entirely
different types of yielding, and significantly different functional
relations between the COD and the nominal strain £ may result, such
that the experimentally calibrated curve 4>- €/&0 may locate above or
below the Burdekin's design curve(see Fig. 4 and 3). Some criticism
and confusion on the safety of the Burdekin design curve had thus been
raised. Recent analysis and experiments(Soete and Denys, 1976; Soete,
1977; Teai, 1976, 1977; Tsai and coworkers, 1978) drew attention to
the ligament yielding disturbance and the effect of strain hardening.
The conclusion is that the Wells' or Burdekin's formulas or design
curves are valid only in the case of small cracks within large high
strain zone without any interference of ligament yielding. However,
since high strain concentration zone in actual engineering components
is often encompassed fully by surrounding elastic region(contained
plasticity), ligament yielding is impossible to develop for edge
cracks and side surface cracks. Further, the deep surface crack is
usually treated as a through the thickness crack of the same length.
In all these 2actual engineering cases, the Burdekin's design curve
seems consistent with the results of experimental calibration under
the absence of ligament yielding disturbance and the results of ex-
trapolation of F.E. calculations. Finally, it is important to note
that, while the above analytical and experimental calibration results
are in good agreement with the COD design curve, the comparison of
the predictions with the results of large-scale fracture tests shows
that the critical crack size at fracture is about 2-3 times larger
than maximum allowable crack size estimated by the design curve based
on initiatien COD, owing to the presence of stable crack growth after
initiation.
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Recent works on J-integral design curve and formulas for high strain
brittle fracture analysis have been proposed by various authors(Begley
and coworkers, 1974; Tsai, 1976; Merkle, 1976; Turner, 1978). The re-
sults show essential equivalence of the two approaches. However, owing
to the complexity and limited accuracy, no experimental calibration

of J-integral under general yielding condition had been conducted to
study the effects of the crack geometry, the ligament yielding distur-
bance, the stress state, the presence of yielding plateau and the
strain hardening parameter n of the materials.

CRACK GROWTH WITHIN CYCLIC STRAIN ZONE

Crack growth rate and life analysis under strain fatigue condition is
another important topic of high strain fracture analysis. It can be
described by COD or J-integral parameters. The formulation using J-
integral is most simple and has been proposed by Tsai(1976) and inde-
pendently by Mowbray(1976) for fully reversed strain cycling. However,
since J-integral is based on the deformation theory of plasticity and
can be applied only under monotonic loading condition, its application
to crack growth analysis under fully reversed strain fatigue condition
needs some elucidation. In fully reversed strain controlled fatigue
experiment, each uploading stage of a cycle is followed by reversed
compressive plastic deformation, during which all the residual stress
and strain field of the crack body will be removed, after unloading
of the compression, the crack body is free again from any stress field
except some strain hardening or softening of the material. Thus during
the uploading of the next cycle that makes the crack to open and grow,
the crack body is monotonically loaded again from its free state and
the J-integral does determine the crack tip field and control the mag-
nitude of crack advance aa = da/dN,

Based on the identity of crack tip field under the equality of AKz/E'
for small scale yielding to the J-integral for general yielding, i.e.
AK2%/E' = J, we may suppose equal crack growth rate in these two case.
Thus (da/dN)g y, = (da/dN)g gy, = AGKR, substituting AK2/E‘=J into
the later formula, we may have the following expression

(da/aN)g y. = A(E'7)D/2 = cgT (20)
for crack growth rate of a small crack within a large cyclic strain

zone with r = n/2 and C = A(E')n/z. Substituting (19) into (20) we
have

da/dN = C(21tqaf6'd£ )E (21)
where J = Zﬂqafa’dﬁ and fcdt are corresponding maximum J-integral

value and maximum work density absorbed by the material during the
uploading stage of the cycle that makes the crack to open and propa-



1458

gate. By integrating the eq. (21) from initial crack depth aj to final
crack depth ap, and assuming {trde to keep constant, we arrive at the
following fatigue life formula

Ne( [0d€ )T = (a]"T-a}T)/C(r=1)(27q) T (22)

In order to test the applicability of the above analysis, LCF experi-
ments of superalloy smooth specimens and precracked specimens with
small initial cracks of two given depth (a1-0.22mm and a1=0.67mm) had
been conducted under controlled total strain range(Shen and Tsai, 1980
), the result (Fig. 5) confirms the formula (22) with r=1.8 and C=3.03
and ap=2mm when the J-integral is in MN/m or MJ/m2 and the crack
length in mm. It is interesting to show that the value of r=1.8 and
C=3.03 obtained from LCF 1ife data of precracked specimens in 5137 5
is in good agreement with the value of r=n/2=1.8 and C=A(E/1-v2)3/2=
2.45 calculated from crack propagation data measured under small scale
yielding condition, da/dN=4.48x1O‘1QAK3'6. For smooth specimens, the

8 Smooth Specimens
o Precracked g;=0-22mm

\ o Precracked a;=0.67mm
. N

T T TTT

10

fode , MPa
..;n",
/

s
J

/jij///

10 \c

Fig. 5. Strain controlled LCF life of smooth specimens and
precracked specimens with small pre-existing crack at
room temperature for superalloy Ni-20%Cr-2.5%Ti-0.7%
Al-1.5%Nb, aged at 750°C, 16 hr.

effective initial crack depth calculated from measured Ng, [O'dE ’
ag=2mm and r=1.8, C=3.03 is a;=40um, which is a 1little smaller than
the mean grain size (70um) suggesting that a given number of cycles
is required for the erack nucleation along the persistent slip band
in the grain.

The advantage of the above fracture mechanical approach for predicting
the high strain fatigue life is its ability to teke into account the
effect of small pre-existing flaws, while the conventional "local
strain approach" based on Coffin-Manson relationship can be used only
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when no pre-existing crack is present in the high strain region of the
components. Thus, the present approach is most suitable for welded
structure where the probability of small defects of 0.1=0.5mm in size
is high within critically strained regions.

While the above LCF life prediction based on high strain fracture me-
chanical analysis shows some promise of engineering use, there are
still problems on its practical applications. Firstly, it is apparent
from Pig. 5, that the life of the precracked specimens with initial
crack depth a;=0.22mm under strain fatigue condition is only 20-30%

of the life for smooth specimens. Thus, as the engineering crack for-
mation life is usually defined as the life of forming a small crack
of 1/32"(0.8mm) in length or 0.2-0.3mm in depth, the crack propagation
life which can be described unambiguously by the above analysis is
only a minor part of the whole life. Although the engineering crack
formation stage is actually a stage of crack propagation of very small
crack(10um to O.2mm) within area of high cyclic strain, the applica-
bility of the above fracture mechanical analysis is doubtful since the
strength of the crack tip field is rather low due to the negligible
size of the crack, and the gross stress-strain range will have a lar-
ger contribution to the cumulative damage of the material. In this
case, the crack initiation and early growth rate should be controlled

by overall stress-strain range rather than by the crack tip field pa-
rameter J.

Finally, in fracture mechanics and the continuum model of fatigue
crack propagation it is usually assumed that plastic strain ahead of
crack tip is microscopically homogeneous and that each loading cycle
produces a fatigue striation spacing. However, comparison of the fa-
tigue striation spacing with the crack growth rate calculated by equa-
tion (21) using experimentally determined value of r=1.8 and C=3.03
shows that at small crack and low growth rate stage with da/dN <€ 0.2

Fm/cycle, the striation spacings are apparently larger than the growth

rate da/dN(Fig. 6a) and have a lower limit (about 0.1=0.2um) for the
superalloy. This means that at early stage of crack growth each strain
cycle does not necessarily produce a striation at the whole crack
front, but some redundant cycle may be required before sufficient da-
mage accumulates to cause a crack extension step in each grain. PFur-
thermore, TEM observation of thin foils cut from the fatigued super-
alloy smooth specimen shows that the plastic strain is microscopically
inhomogeneous and concentrated at discrete slip bands(Fig. 6b). The
crack forms and propagates only along the intense slip bands. This
means that the fatigue striation spacing can only be the multiple of
the slip band spacing. For the superalloy studied, the smallest slip
band spacing is about 500A and equals approximately the size of the

Y’ phase. Thus, the fatigue striation spacing should not be smaller
than 2x5004 = 1000A. This is consistent with the above SEM measured
result. Thus, the above TEM and SEM observations show that the assump-
tions on the microscopic homogeniety of plastic strain and the omne to

Vol. 4 AFR - B*
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one correspondence of loading cycle and fatigue striation in fracture
mechanics is no longer true in early stage of crack growth, and the
physical meaning of the above result of high strain fracture analysis
and experiment needs further interpretation.

\3‘20 o a=0.44mm
£ 0 a=0.70mm
$ .
810 /8 °
EO.B g/; .
E.us !
o4t o B
Fall
a i 3
s Lz o ° da/dN=3.03[2nd afode]”
k]
@ bl vupatr | v

1 2 3

q ajade , mm-MPa

(a) (v)

Fig. 6. Comparison of fatigue crack growth rate da/dN and the

fatigue striation spacing (a), and transmission elec-
tron micrograph showing the crack path along intense

slip band (b).

CRACK GROWTH WITHIN CREEP STRAIN ZONE

In high temperature zone of engine components small pre-existing
cracks may sometimes be present or form by hot corrosion and their
interaction with grain boundary cavitations under high temperature
creep condition can be deleterious which causes the small pre-exis-
ting crack to grow rapidly. Most experiments on creep crack growth
were conducted using specimens with long crack under ligament cree-
ping condition or under creep bending condition as in DCB epecimen,
however, most cracks in high temperature components are rather small
in comparison with section size of the components, be it formed by
welding or by hot corrosion, furthermore, fixed term inspection and
gservice repair do not allow the small cracks to grow large, so that
from the view point of 1life design and fracture control it is urgent
need to conduct experiment and analysis on crack growth and stress
rupture life of precracked superalloy specimens or components with
small pre-existing cracks where general creeping condition prevails.
Our experiment on stress-rupture life of engine disk superalloy (Ni-
204Cr-2.5%11-0.7%A1-1.5%Nb) specimens shows that small pre-existing
erack seriously reduces the stress rupture life and strength of the
superalloy (Fig. 7).
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Pig. 7.

Stress rupture life of smooth and precracked super-
alloy specimens at 700°C.

Inspection of the fracture surface shows that the crack grows along
grain boundaries by growth and coalescence of cavities in front of
the crack border. Thus, micromechanical analysis of creep crack growth
rate based on cavity growth by power law creep( §£ = G ") within the
crack tip field and coalescence with the main crack along grain boun-
daries should be performed in order to establish the crack growth law
under creep condition. The derivation is similar to that given by Nix
(1977), but here the COD rate and creep J-integral parameter J are
used instead of stress intensity factor K, since for small crack with-
in general creeping zone under high stress and temperature, the creep
strain rate is rather high such that the elastic crack tip field will
be relaxed soon after loading and the crack tip field should be con-
trolled by the constitutive equations of power law creep.

For power law creeping materials with é = 0" the constitutive equa=-
tions and its solutions are similar to those of pure power hardening
materials except that the strain and displacement components 81 and
uj should be replaced by corresponding rate quantities Eij and ﬁi.
For a spherical cavity of instantaneous radius R in an infinite

media of power law creeping material, its radial displacement rate R
can be expressed as

R/R = o d"R(n) (23)

This expression can easily be obtained by using a similar dimensional
analysis in deriving equation (5) for pure power hardening materials.
Suppose that the growth rate of a spherical cavity in the crack' tip
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stress field can be approximated by the growth rate of the same cavity
in an infinite creeping media under the same stress field but acting
at infinity. This is valid only when the cavity is smal} compared with
its spacing. The approximation may be good since most life time of t?e
growing cavity is spent in the initial growth stage when the cavity is
small. Thus, we have

B(x) /R(z) = x[G(x)]PR(n) = & (x)2(n) (24)

distance x in front of
for the growth rate of a cavity located at a

the moving crack tip, where (O(x) and g£(x) may be any stress ancd
strain rate component or its linear function at x owing to proportio-
nal loading.

Under the steady state of crack propagation, the crack growth rate can
be calculated by considering either the moyement of the crack ti? to-
ward the cavities or the motion of one cavity toward the crack tip.
Here we use the later approach. Let A denotes the mean spaging of
the cavities. Under steady state of crack growth with rate at= d:ﬁdt,
while approaching from a large distance x = x5 to e
Zizzkczzztiégion at §p= A2, ghould grow from its initial radius Ry
to the final radius Re = A/2 and coa@esses at the crack tip to ensure
the steady crack growth. Thus. with a = da/dt = -dx/dt (since a+x =
const.) and dR(x) = R(x)dt = -R&x)dx/d in mind, from equation (24) we
have A

2
[ AR ff‘(,,,éw (-%)
and R, R %o 5
o
3 = = _£(n) 3 d (25)
& = da/dt Tn ¥y 2R, A/:.'(x) x

Furthermore, for power law creeping materials, similar equations as
(4) and (6) can be obtained from which we should have:

£(x) =(8/8)$(x/a,n) (26)

where £(x) may be any strain-rate component at x. Substituting the
later expression into (25) we arrive at the following crack growth law
described by crack opening displacement rate parameter 8 .

da/dt = BS (2n
/a

where B = [£(n)/1n(A/2R,)] | ¢ (x/a,n)d(x/a) can be measured by creep
crack growth experiment. A/2q

J-integral parameter i
ilar crack growth law described by creep
gig also be obtained by substituting the HRR singularity relationship

é(x) = &(J/wIpx)®/2*1 €(0,n) into the equation (25), i.e.
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da/dt = cgn/n+1 (28)

Using the plane stress F.E. results of 8 for crack tension plate of
power law creep material given by Shih and Hutchinson(1976), i.e.

§ = ogy(a/b,n)a(bo/b-a)? (29)
the equation (27) can be transformed to
da/dt = Da(bo/b-a)® (20)

where D =xBg,(a/b,n) can be treated as constant for engineering pur-
pose. By integrating equation (30) from ajy to ap, we have

Do%t = [ L(1-a/b)%aa (31)
a.:

The parameters n and D for the suéeralloy crack tension plate (with
plate width b=20mm and thickness t=3mm) at 700°C were found to be
n=10 and D=0.7x10~26 to fit the experimental results shown in Pig. 7.
The two lower solid lines are plots of equation (31) with n=10,
D=0.7x10"26 and ap=10mm. Although the above experimental result on
thin plate under ligament creeping condition can be extrapolated to
a/b+0 to obtain the crack growth law of a small crack in a large ge-
neral creeping thin plate a = aiexp[0.70x10‘25cﬂot], however, in most
engine components, small surface cracks are usually met, where the
plane strain condition and general creeping case prevail against plane
stress and ligament creeping. Thus, we have conducted stress rupture
experiment on tension round bar of 10mm in diameter with small pre=
existing surface crack of depth 0.5-0.8mm under plane strain condi-
tion. It is difficult to analyse the crack growth rate and 1life of a
surface crack in a tension round bar under ligament creeping condi-
tion owing to the geometrical complexity, and we must confine the ex-
periment to the general creeping condition, that is, the stress rup-
ture experiments of the tension bar with small surface crack of 0.5=-
0.8mm depth were interrupted so that the final crack depth ar would
not be largerthan 2.5mm. Under this general creeping condition, from

equation (8) we have §= 2gqalgh), substituting into (27) and in-
tegrating, we obtain

DO®t = 1n(ag/aj) (32)

where D = 277q B, Using the data of interruption experiments, the
parameters D and n for the superalloy at 700°C under plane strain con-
dition were determined to be n=10 and D=1.02x10-28, and the crack
growth formula under plane strain and general creeping condition is

given by a = aiexp[1.02x10'28-ojot]. It is interesting to note that
the crack growth rate for the superalloy under plane strain condition
is about two order lower than under plane stress condition. SEM exa-
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mination of the fracture surface shows that the cavity size and spa-
cing at the mid section of the plane strain specimen is apparently
smaller than that of plane stress specimen. This may relate to the
lower creep strain rate at the crack tip and so lower cavity growth
velocity under plane strain condition, such that more cavities can
nucleate before their coalescence. The above experimental result
shows that small surface crack under plane strain and general cree-
ping condition may behave differently in comparison with through
crack in thin plate under plane stress and ligament creeping condi=-
tion. Thus, in order to predict accurately the crack growth rate and
life of engine components with pre-existing small surface crack, ex-
periment and analysis on crack growth and stress rupture life of spe-

cimens with small pre-existing surface crack under plane strain and
general creeping condition is needed.

CONCLUSION

High strain fracture analysis is an important topic for engineering
materials and structures. It includes the analysis of crack formation
and crack growth of small cracks within the area of high monotonic,
cyclic or creep strain. While the formulations of high strain frac-
ture problems using crack opening displacement parameters( Sor § )
and J-integral parameters(J or J) based on pure power hardening or
power law creeping model are simple and show some promise for en-
gineering applications, there are still problems remaining to be
solved. In high strain brittle fractures, analysis of the stable
crack growth and the instability point is an important topic for fur-
ther study. Recent developments in J controlled stable crack growth
and the concept of tearing modulus show some prospects for this ana-
lysis. Further, in high strain fatigue and creep fracture, the crack
tip singularity strength is very low owing to the negligible crack
depth at the crack formation or early crack growth stage, and the
gross cyclic strain range or creep strain may have a larger contribu-
tion to the fatigue or creep damage in the bulk. Thus, it is thought
that the crack formation life or early crack growth life should be
controlled by gross strain rather than by crack tip field parameters.
In these cases, micro-mechanism investigations and micro-mechanical
analysis of the damage process and the early crack growth in combina-
tion with the above fracture mechanical analysis should give a better
solution in prediction. However, TEM and SEM investigations show that
the crack forms and propagates either along intense slip bands in
strain fatigue(Fig. 6b), or along grain boundaries in creep fracture
(Fig. Tb), where fatigue damage or creep damage( cavity growth) accu-
mulates. This damage localization in the bulk caused by gross strain
and its close interaction with the crack tip makes the materials more
sensitive to the small crack tip field. Thus, it is believed that al-
though the crack tip singularity field is low due to the small crack
size, the crack tip field parameters may still control the crack
growth rate and 1life and the above high strain fracture mechanical
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analysis may stillvapproximately valid or can be modified to include
the effect of the gross damage in the bulk, since the major contribu-
tion of the later is to accelarate the growth of the main crack.
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