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ABSTRACT

This paper presents a summary of the development of the nonlinear energy (G)

method for fracture toughness determination that has been pursued at GWU over the
last ten years. Although considerable research has been performed in other aspects
of fracture mechanics, such as biaxial loading, temperature effects and fatigue;
this paper emphasizes static, uniaxial loading on center-cracked and compact ten-
sion geometries. The analytical foundation of the method and procedures for eval-
uating G by the finite-element method are presented, with a major finding being
that the plastic energy and crack size are linearly related during subcritical
crack growth. Experimental evaluations of G are also presented and comparisons
between the finite—element and experimental results are shown to be excellent.

KEYWORDS

Fracture toughness, nonlinear, crack growth, finite-element evaluations, experi-
mental evaluations, comparisons.

INTRODUCTION

Continuing research into fracture mechanics concepts after the acceptance of the
standard method for fracture toughness testing of metallic materials, ASTM E399,

has led to widespread emphasis on the development of materials having considerably
higher fracture toughnesses, while maintaining other properties such as yield strength,
etc, The success of these efforts has led to the necessity of employing ever-in-
creasing specimen sizes and testing expenses or the development of new fracture
criteria capable of incorporating crack-tip plasticity and subcritical crack growth
into the fracture toughness. A number of methods for fracture toughness determination
under inelastic (nonlinear) conditions have been proposed including the R-curve, J-
integral, crack-opening displacement (COD) and nonlinear energy (G) methods.

The nonlinear energy method has been subjected to analytical, finite-element, and ex-
perimental development at GWU over the last ten years. Comparisons have been made
between G obtained by the finite-element and experimental methods and also with other
fracture toughness parameters. The purpose of this paper will be to present: (Z)
the major analytical, finite-element, and experimental developments of the nonlinear
energy method, (Z7) correlations between them, and (ZZ%7) comparisons with other non-
linear fracture toughness test methods.
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ANALYTICAL BACKGROUND

Consider an elastic, (linear or nonlinear) material body, which contains a single
crack and is subjected to static loading at the outer boundary. The strains are
assumed to be infinitesimal and the elastic material response requires that there
exist a strain energy denmsity, ¢, which is a function of strain only, such that the
increment of strain energy of the body, dU, may be written

2 B _%
dy = JV (d$) dv = JV (Uijdeij) dv , where Gij = aeij " (1)
It is noted that

m

du = JV (Uijdui,j) dv = JV [(Oijdui),j] dv = ¢)(Oijnjdui) ds = dW , 2)

which means that the increment of strain energy over the body equals the increment
of work done on the surface of the body. In the previous derivation, the Green-
Gauss theorem, which converts the volume integral into a surface integral, and the
following equations have been applied '

e,. = %-(u Hily Ny i = O =0 . (3)

2,4 L %1104
In the case of no subcritical crack growth, the crack surface does not contribute
to the increment of work done, dW, and, therefore, Eq. (2) means that at any point
prior to unstable fracture the strain energy of the body is equal to the total
work done by the externally applied loading. For a center-cracked specimen sub-
jected to uniaxial loading, as shown in Fig. 1, the work done can be expressed in
terms of the load-point displacement, v, as

v
/45 w—> W= J.OF v , %)

—
T o o——o——oiyo——o——o

where F is the total applied load. Now, consider a
specimen with initial crack size a, which is loaded to
a certain point A (F = F,, v = v.) and then the crack
size is increased to a,, under:(d) fixed load conditions
(Fig. 2a), (b) fixed grip conditioms (Fig. 2b), or (c)
general conditions (Fig. 2c), along the path AB. The

. conditions illustrated in Fig. 2 will clearly be dif-
%&C:Za** ferent from the situation in which a specimen with in-

itial crack size a, is loaded to point B, where the

G.L. loading path in the load-displacement diagram will be
the curve ONB. The increment of external work done
between points A and B, dW,,, and the strain energies
at points A and B, U, and , for fixed load, fixed
grip, and general conditions can be obtained graphi-
cally as:

L—o o—o—opo—o—o

(a) Fixed load conditions; A (Fl,vl), B (Fl’VZ) s

v
Fig. 1. Specimen Geometry. _ I 2 _ o %
dWAB = v, Fldv = Fl(v2 vl) Area[ABDCA] , (5)
Jvl Ivz
UA = WA =48 F dv = Area[OMACO], UB = WB =5, F dv = Area[ONBDO] . 6)
(b) Fixed grip conditions; A (Fl’vl) 5y B (FZ’Vl) s dWAB =0 , 7
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Fig. 2. Illustration of fracture under various boundary conditions.
K [
UA = WA =0 F dv = Area[OMACO] , UB = WB =rl F dv = Area[ONBCO] . (8)
(e) General conditions; A (Fl,vl) A (FZ’VZ) 5
J"’z 1
dWAB = v, F dv = E-(F1 + FZ) (v2 - vl) = Area[ABDCA] , 9)
i o
Uy =it = Io F dv = Area[OMACO] , Ui = W= Jo F dv = Area[ONBDO]. (10)
The energy release rate G is then obtained as
< Lini [deB = (U UA)J L ddmie [Area[OMABNO]] an
az*al a2 = al a2+al a2 = al

Equation (11) indicates that G is unique irrespective of what conditions were
imposed at the onset of unstable fracture.

EVALUATION OF 6C BY THE FINITE-ELEMENT METHOD

From the previous analysis, it is seen that, for the case of no subcritical crack
growth, the energy release rate is obtained by differentiating the energy differ-
ence between curves OMA, ONB, and line AB with respect to the crack size. Also,
it was proved by Lee and Liebowitz (1977) that the energy release rate is obtained
by differentiating the complementary energy with respect to the crack size for
fixed load conditions or by differentiating the negative of the strain energy with
respect to crack size for fixed grip conditions, without the necessity of assuming
that the specimen is under uniform uniaxial loading.

Although the expression for G, Eq.(11), is only applicable to those cases which
have no subcritical crack growth, in almost all practical cases, some subcritical
crack growth occurs prior to unstable fracture. To account for the effect of sub-
critical crack growth, Jones and others (1978) developed four empirical methods for
evaluating G. According to these four methods, the values of G evaluated by the
finite-element method (Lee and Liebowitz, 1978) are 473, 518, 520, 492 (1b/in.) as
compared with the experimental values 521, —--—, 520, 581 (1b/in.), respectively,
for the same specimen. In addition, Lee and Liebowitz (1978) developed a nonlinear
finite-element computer program which permits incremental changes in the crack
length. This program has two important features. First, it is based on an
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%ncremental t?eory of plasticity for which ?he stress—stréin relation is expressed and it was found that P, = 34.14 in.lb/in., and m = 914.04 1b/in.
in the following incremental forms for loading and unloading, 1
1-2 3 n-1 ~ (2) Take the linear relation between plastic energy and crack size, i.e., line NC
E de,, = (14v) ds.. + —%—2 dokk S,. + E—ac ds.. . in Fig. 4.3, as input with'the values of P, and m obtained previously and the
H H +J & 2 initial crack size to be a, = a, + Aa. As output, a crack growth resistance
9 n-3 curve NC (Fig. 4.2) and a 1oad—&isplacement curve ONC (Fig. 4.1) are obtained.
2 B H : : TeE 4 A
+ 7o (n-1) o sij Sy dskl (loading) , . (12) Notice that, at point C, ag = ag a
= 1-2v g (3) Although it is noticed that, during the fracture process from point M to
B deij = () dsij & 3 dckk 6:’Lj (unloading). 13) point A and from point N to point C, the crack sizes are varying (which is

In Eqs. (12) and (13), E is Young's modulus, v is Poisson's ratio, o and n are
material constants and the stress deviator Si:0 and the effective stress, Ge’ are
defined as 2

Sij = cij

N w

—%o T o Sl (14)

2
e ij "ij
Second, the crack size is regarded as an unknown variable, and therefore a scalar
governing equation is needed. At the beginning, the experimental data relating
applied load and crack size were taken as the governing equation. Then it was
found that, during the entire process of subcritical crack growth, the plastic
energy was linearly related to the crack size, i.e.,

I - 4 DTl

where P = N m)occe

P - Pi =mn (a - ai) i dA . (15)
A In Eq.(15), 0* is the maximum effective stress,
ow Vs a, is the inifial crack size, and P, is the
Specimen No. : 11 critical value of plastic energy -beyond which
S the crack-size will be increased. It is noted
2a = 6in. that the plastic energy, maximum effective
Rl stress, and crack size are monotomnically in-
creasing quantities during the entire process of
subcritical crack growth; and also the irrever-
sible and dissipative nature of plasticity and
fracture places considerable significance on the
relation exhibited by Eq.(15). For example, a
a typical load-crack size curve for a center-
cracked 2024-T3 sheet was used to establish the
Correlation Coefficient=0999 linear relation between plastic energy and crack
Po= 25.04 in.Ib/in size, as seen in Fig. 3 (Liebowitz, Lee and
dP/da=857.63 Ib/in. Subramonian; 1979a, 1979b). The linear relation
was then used as input to the finite-element pro-
gram (instead of the experimental load-crack size
curve) and a computer—generated crack growth re-
sistance curve was seen to fit the experimental
data exactly. This procedure has also been suc-
cessfully applied to other tests on 2024-T3 and
7075-T6 sheets.

20

0.5

f— a/w
(] 0.50 0.51 0.52 0,53 0.54 0.55 . . . ]
Thus, it is possible to use the finite-element

program, along with Eq.(15), to evaluate G in the
following manner:

Fig. 3. Linear relation between
plastic energy and crack size.

(1) Take the experimental load and crack size data (Fig. 4.2), as input to the
computer program, and obtain a load-displacement curve (Fig. 4.1) and a linear
relation between plastic energy and crack size (Fig. 4.3), which provides the
values of Pi and m in Eq.(15). The data for another test are shown in Fig. 5,

different from the conditions on which Eq.(11) was derived); it is proposed
to evaluate GC in a similar manner, i.e.,

Feg—— ————

() "

5 . limit [Area[OMACNO]}
¢ a.,va, a, - a,
gl = & x ¥ 1
_ limit [Area[OMACNO]}.(lé)
af—’af af - a

For the data given in Fig. 5, the
energy release rate, G_, obtained
from Eq.(16) was 654 16/in. and
the experimental value based on
the first method proposed by

a Jones and others (1978), was 646

Fig. 4. Illustrated
procedures to evaluate
nonlinear fracture
toughness.

1b/in., with a difference of
1.14%. 1In using this proposed
method to evaluate the energy re-
lease rate, it is not necessary
to use the ASTM formula to calcu-
late the stress intensity factor
or the G-K relation to obtain the
linear energy release rate, G _,
nor is it necessary to assume a
particular form for the load-dis-
placement curve in order to
calculate C.
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Fig. 5. Relations between
plastic energy.

a’i ag
F (K.b.)
t 100PE/(e, W)?
3
i s 2024-T3
L=22 in.
2W=12in.
© EXPERIMENTAL DATA 2a;=6in.
1k
e F.E.RESULTS B=0.062 in.
" — LINE OF BEST FIT
@2 3)
L 1 L. oa/w (NoyIECSE DI R RN, By
50 52 54 56 50 52 54 56

applied load, gauge point displacement, crack size, and




1774
EXPERIMENTAL EVALUATION METHODS FOR éc

In order to obtain a careful assessment of the value of the nonlinear energy method
as a measure of fracture toughness in the nonlinear range, an experimental program
has also been pursued over the last 10 years. This program has encompassed compar-
isons of center-cracked data of five aluminum alloys and compact-tension tests on
two steels, two titanium and several aluminum alloys. For the center-cracked
panels, the effect of specimen geometry was examined by conducting test series in-
volving the independent variation of specimen length, width, and crack length-to-
width ratio (Jones and others, 1978). In addition, the influence of anti-buckling

guides was examined and in most cases comparisons were made with the R-curve method.

For the compact tension specimens, test series were performed at various thick-
nesses above and below the minimum requirement for plane-strain fracture, and for
some materials the size effect was also studied.

AF Fy=Fc, y : : . 3
= Fom In situations where the nonlinearity of the load-dis-
T ——fatk (3) placement curve is due entirely to the effects of plas-
/ tic deformation; it has been shown (Eftis, Jones and
F1// Liebowitz, 1975) that Gc can be obtained from the ex-
/ A/ pression 1
/ M=tane = 20k, cic % Fi d (1 &
a1M=tan8; G_ = [1 + = (D) ] LB ) = CRGH a7
/ ot it o c n+l ‘M 2B da "M c
/ when the curve is modeled by the relation
n
CP) = E 5
s 91 v M + k (M) H (18)
Z \ \ \ (a) v as illustrated in Fig.(6a). Equation (17) can be re-
F > duced to
A Fe
_______ = . 2n (l-az) A o
_____ ~ Gc=[1+a2_(n+T)' G, =CG, (19)
FCFC -
A / ' where C > 1 as k >~ 0 and n >~ 1 for increasingly
A | brittle fracture.
Mo=t
M°=1:z§2° I Equation (17) assumes the existence of nonrecoverable
€ et or inelastic deformation without subcritical crack
8¢ [ growth prior to unstable fracture. However, for most
IS \ Vi fracture toughness tests, especially for thin sheet
! () | 5. specimens and/or high toughness materials, subcritical

crack growth begins after very limited amounts of plas-
tic deformation and well before the onset of unstable
fracture. The difficulty in evaluating G_ under these
conditions is due to the evaluation of the nonlinear strain energy rate associated
with the nonlinear part of Eq.(18). It is not possible in this situation to cal-
culate the nonlinear strain energy rate directly from the load-displacement record
because the applied work is no longer equal to the total strain energy_of deforma-
tion. In order to estimate the effect of subcritical crack growth on Gc’ four
alternative methods have been proposed and comparisons made.

)l v
"Fig. 6. Typical load-
displacement curves.

Method 1. It is widely recognized that the critical load at the onset of unstable
propagation decreases with increasing initial crack size. Thus, the load at un-

stable_fracture after subcritical crack growth, F_, will be lower than the critical
load, F_, that would have been obtained had there been no subcritical crack growth.
However; subcritical crack growth introduces additional nonlinearity into the load-

displacement record, thus increasing C relative to the situation with no subcritical
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crack growth. Therefore, the effects of subcritical crack growth on F and C tend
to offset each other in their effect on G_, which suggests that one me hod of incor-
portating subcritical crack growth into G would be to use the actual load-displace-
ment curve (including crack growth) to determine C and F_, and the initial crack
size to determine G_. Determination of G_ values for center-cracked panels by
Method 1 thus involVes the use of the initial crack size, a_, and the actual load-
displacement record to determine C and F_. These quantities are then incorporated
into Egs.(17) or (19), where G_ is obtaired from the appropriate stress intensity
factor and G-K relation. For The center-cracked geometry, Eq.(19) becomes

2.2

i 2n (1—a2) FC z ma, a, a,
GC = [1 + -——-——-——'az (n+1) ] (;J_B_) ﬁ-_ [1 - 0.1 (—w—-) & (W—) . (20]

Method 2. A typical load-displacement record incorporating subcritical crack growth
Ts shown as OAB in Fig. 6b, where the slope of the linear portion of the curve, M _,
is considered to be a function of the crack size only. If subcritical crack grow%h
had not occurred, the path would have followed OAB instead. A correction to the
crack growth portion (AB) of the curve to account for subcritical crack growth can
be introduced in the following manner. At any point along AB, the crack length is

a > a_, the displacement is v and the applied load is F. Without subcritical crack
growtﬁ, the load F will always be greater than the actual applied load by the amount

=

M
o o Al Ly
F=F T and, at unstable fracture, FZ = FC MZ (21a,b)

where 1/M represents the compliance at any point along AB, and it is assumed that
the critical displacement, v_, is the same for both curves. The curve OAB can be
constructed from Eq.(21la) by use of the instantaneous crack lengths and M values
along AB. An evaluation of G, can then be made by applying Eq.(17) to OAB, which
yields

G =

2 18, F, % 2R (1-3)) M 2
[e]

d i
——= |5 I am) = [1 G G (22)
o, (n+1) o, (n+1) c

where the bar over n and 0y refers to OAB, and E; is evaluated using Fc and a,.

Method 3. Another method similar to Method 2 has been employed to correct the G
Values for subcritical crack growth. Since Eq.(17) is strictly valid only for O

in Fig. 6b, Method 3 employs values of M_, n and k_ from only this portion of the
curve and extends OA using Eg.(lS) until v_ is reached. This_extension also repre-
sents a curve of the type OAB and leads to an expression for Gc in the form

i 2n, (1-0y)y _
Gc i [1 % o, (n°+1i ] Go q 2%

where G is evaluated from F_ and a_. Method 3 has several advantages over Method
2 since there is no need to Setermifie M or the extent of subcritical crack growth
at various points along AB. These advantages are significant because crack growth
measurement is relatively inaccurate in comparison to the other variables and
usually require additional specimens and test measurements.

Method 4. This method is based on use of the critical crack size to obtain a
modified load-displacement record, OAB in Fig. 6b. This curve is obtained by
assuming the initial crack size to be a_ and employing n_ and k_ as defined in
Method 3. The nonlinear energy fractur€ toughness can tBen be Obtained from
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- 2no (1-a2) Fc 2 ﬂac ac a. o2
GC = {1 + EE—TE;:TT-J(Wga Vi [1 - 0.1 —t (W—J J (24)

for the center-cracked geometry. Method 4 has the advantage that it is not necessary
to make assumptions about the critical displacement, v _, but shares with Method 2
the necessity of determining the critical crack size.

EXPERIMENTAL RESULTS

The first results to be reported in this section will be some comparisons between
the four methods just discussed. All four methods have been applied to two center-
cracked sheets of 2024-T3 aluminum and the resulting toughness values are shown in
Table 1. These comparisons show that there is a variation of approximately 12% in
C and 17% in G, for each of the two tests. However, the compensating nature of
these variationis is clearly seen in the results for G which vary less than 8% for
both tests. It is noted that the Method 1 fracture toughness values are the smal-
lest of the four methods and thus represent a slightly more conservative estimate

TABLE 1 ac Values Obtained by Four Methods of Crack Growth Correction For Two
2024-T3 Specimens

G G

Specimen Method of i & 2 5 2
No. calculation G (1b/in.) MJI/M) (1b/in.) MJ/m™)
1 1 1.422 394 0.0690 560 0.0981
1 2 1.258 465 0.0814 585 0.1025
1 3 1.332 427 0.0747 569 0.0996
i 4 1.332 455 0.0796 606 0.1061
2 1 1.318 401 0.0702 529 0.0926
2 2 1.164 467 0.0817 543 0.0951
2 3 1.209 448 0.0784 541 0.0947
2 4 1..209 470 0.0824 569 0.0996

of G  than the other three. These results, and a number of other comparisons giving
similar results (Jones and others, 1978), have led to the conclusion that Method 1
is the preferred alternative since it is the most easily used and the others pro-
vide differences less than the normal experimental scatter encountered in fracture
toughness testing. The remainder of this section will present a number of G_ eval-

uations, all based on Method 1, and some comparisons with other nonlinear fricture
toughness parameters.

Center-cracked panel tests. A large number of fracture toughness tests have been
performed on several aluminum alloys 7075-T6, 2014-T6, 2024-T3, 2024-T81 and 7475-
T61. The effects of variations in all of the geometric variables, including length,
width, and crack length-to-width ratio have been examined. Because of the interest
in the effect of subcritical crack growth on fracture toughness values the toughness
values were evaluated at both the onset of subcritical crack growth, G_, and at
unstable fracture, G . The linear toughness parameter, G_, was also evaluated at
the initiation of subcritical crack growth to provide bas@line data. Because of
space limitations, only one test series, which is generally typical of the results,
will be presented. Figure 7 shows the results of the test series on 2024-T3 in
which the gauge length was varied. The fracture toughness values, GO and G_, eval-
iated at the onset of subcritical crack growth are both nearly equal and ingependent
of gauge length (and specimen length as indicated in Fig. 1). However, when the
fracture toughness is evaluated at the onset of unstable fracture, using Method 1,
the toughness values are no longer independent of gauge length. Also they become
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Fig. 7. Nomlinear fracture toughness of 2024-T3 sheets.

much larger than 60 for the shortest specimens.

Compact tension tests. In order to obtain more information about the character-
istics of the nonlinear energy method, a number of additional fracture toughness
tests have been performed on 7075-T651, 2048-T351, 2048-T851, 2124-T851, and 7175-
T7651 aluminum alloys, 4340 and AS533B steels, and Ti-6A%-4V and Corona 5 titanium
alloys. The specimen dimensions corresponded to ASTM E399 except for the thickness
which varied from above to well below the minimum value for plane strain fracture
toughness determination. The provisions of E399 were followed insofar_as they were
applicable to these tests, with the principal exceptions that G o and G% were used
to designate all toughness values regardless of specimen thicknéss and fRe fracture
toughness values were evaluated at both the initiation of subcritical crack growth
and at unstable fracture. For most of these tests, comparisons were also made with
the J-integral toughness obtained from the formula JI = 2A/Bb, where A is the area
under the load-displacement record and b is the remalﬁing ligament length. Since

THICKNESS (in)
0 0.25 0.50 - 0.75 1.0 1:.25 1.50
T T T T T T
]

~ . 150
i = 06, ®&, T

) aJ, & Jpe
5 B . 5
0.02 OlGr A @Gy

- 100

FRACTURE TOUGHNESS (MJ/m2)
®
FRACTURE TOUGHNESS (1b/1in)

1 1 1 1 0
g 0 1.0 . 240 3.0 4.0

THICKNESS (cm)
- Fig. 8. Variation of toughness parameters with thickness for 2124-T851(T-L).
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all of the test records had been modeled by Eq.(18), the load-displacement records
were integrated directly to provide an expression for the area under the curve in
the form A = CF/2M. For these comparisons the clip gauge displacements were con-
verted to load-line displacements (Liebowitz, Jones and Poulose, 1974) in accor-
dance with recommendations for JI evaluation. Although the recommended practice
for J. _ evaluation does not perm1% subcritical crack growth, the J-integral was
also évaluated at both critical points for comparison purposes. Comparisons between
the toughness values for 2124-T851 aluminum evaluated at both critical points are
shown in Fig. 8, where a behavior similar to the center-cracked sheets is observed.
When the fracture toughness values are evaluated_at the onset of subcritical crack
growth, all three toughness values G, , J. and G, are approximately equal and in-
dependent of specimen geometry. The Closé agreement between the G, and @i values
indicates that these results correspond to a very limited amount o%ononlinegrity in
the load-displacement record. However, when these quantities are evaluated at
unstable fracture (peak load), the fracture toughness values G. _, JI and G, ex-
hibit considerable thickness dependency with the difference be%&een $he valiés in-
creasing with decreasing thickness. It is seen that the difference between GI and
G, is approximately a factor of three, which is similar to the results given for
2094-T3 in Fig. 7. Although many additional test series have been performed, space
limitations preclude their inclusion in this paper.

CONCLUSIONS

(1) The nonlinear energy method has been developed as a self-consistent method
for fracture toughness determination under elastic-plastic conditions and

as an effective approximate method when subcritical crack growth is included.

(2) A procedure for evaluating ¢ by the finite-element method was presented,
with a major finding being the linear relation between the plastic energy
and the crack size during subcritical crack growth.

(3) Correlations have been made between G evaluated by the finite-element and
experimental methods and the agreement between them was excellent.

REFERENCES

Eftis, J., D. L. Jones and H. Liebowitz (1975). On fracture toughness in the non-
linear range. Eng. Fract. Mech., 7, 491-503. s

Jones, D. L., P. K. Poulose, J. Eftis and H. Liebowitz (1978). GC and R-curve
fracture toughness values for aluminum alloys under plane stress conditions. Eng.
Fract. Mech., 10, 433-452,

Lee, J. D. and H. Liebowitz (1977). The nonlinear and biaxial effects on energy
release rate, J-integral and stress intensity factor. Eng. Fract. Mech., 9,
765-780.

Lee, J. D. and H. Liebowitz (1978). Considerations of crack growth and plasticity
in finite element analysis. Comput. & Struct., 8, 403-410.

Liebowitz, H., D. L. Jones and P. K. Poulose (1974). Theoretical and experimental
comparisons of the nonlinear energy method to the J-integral, R-curve and COD-
methods in fracture toughness testing. Proc. 1974 Sym. Mech. Behavior of Mat'ls.,
2. Society of Material Science, Japan, 1-20.

Liebowitz, H., J. D. Lee and N. Subramonian (1979a). Effects of plasticity and
crack geometry on fracture. Trans. 5th Int. Conf. Struct. Mech. Reactor Tech.
(Berlin), G6/2.

Liebowitz, H., J. D. Lee and N. Subramonian (1979b). The fracture criteria for
crack growth under biaxial loading. Nonlinear and Dynamic Fracture Mechanics,
ASME (New York), 157-169.

Vol. 4 AFR - M*


User
Rettangolo


