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ABSTRACT

In this paper analytical solutions to the diffraction of elastic waves by penny-
shaped and elliptical cracks in metals have been compared with experimental ob-
servations. The analytical results are for waves in the high-frequency domain.
In the experimental work a digitized spectrum analysis system was used to measure
the frequency components of the waves scattered by a crack in a circular disk of
titanium alloy, which was immersed in a water bath. Analytical and experimental
results show very satisfactory agreement. The theoretically predicted modulation
of the amplitude spectrum provides a simple formula for the inverse problem.
Application of this formula to the experimental measurements determines the crack
size with excellent accuracy.
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INTRODUCTION

One of the most useful methods in quantitative non-destructive evaluation (QNDE)
of structural elements is based on the scattering of elastic (ultrasonic) waves

by flaws in solids. Two general approaches to ultrasonic flaw detection can be
taken. The imaging approach seeks to process the scattered field in such a

manner that a visual outline of the object is produced on a display. The scatter-
ed-field approach attempts to infer geometrical characteristics of a flaw from
either the angular dependence of its far-field scattering amplitude at fixed fre-
quency, or from the frequency dependence of its far-field scattering amplitude at
fixed angle. This paper is concerned with analytical and experimental investiga-
tions for the scattered-field approach to crack-like flaws.

Transient pulses can be written as superpositions of time-harmonic signals. For
short pulses the frequency spectra of the scattered signals are centered in the
high-frequency (short wavelength) range. When the probing wavelength is short,
there are many interference processes whose characteristic forms can provide the
basis for an inversion procedure. Particularly the first arriving signals, which
are related to the longitudinal waves in the solid have a very simple structure.
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The experimental work was carried out by the use of a digitized ultrasonic spect-
rum analysis system. The experimental setups included instrumentation to gate-
out and spectrum analyze the signal scattered by the crack. The raw scattering
data was corrected for transducer transfer functions and other characteristics of
the system, which were obtained on the basis of appropriate calibrations. After
processing, the amplitudes as functions of the frequency, were compared with
analytical results.

Ray Theory

At high frequencies the diffraction of elastic waves by cracks can be analyzed
conveniently on the basis of elastodynamic ray theory. For time-harmonic wave
motion, ray theory provides a method to trace the amplitude of a disturbance as it
propagates along a ray. In a homogeneous, isotropic, linearly elastic solid the
rays are straight lines, which are normal to the wavefronts., An unbounded solid
can support rays of longitudinal and transverse wave motion. These rays are
denoted as L-rays and T-rays, respectively. The free surface of a solid can, in
addition, support rays of surface-wave motion, which are denoted as R-rays.

In analogy with geometrical optics, the simplest theory for diffraction of elastic
waves by cracks may be called geometrical elastodynamics (GE). In GE a crack acts
as a screen, which creates a shadow zone of no motion, and zones of reflected
waves. The displacement field according to GE, which is denoted by u€, is of the
same order of magnitude as the incident field.

The geometrical theory of diffraction (GID) provides a first correction to GE.
This correction is valid for wa/c. > > 1, and at points where S/a > 1. Here w is
the circular frequency, a is a lefigth dimension of the crack, e is the velocity

of longitudinal waves, and S is the distance from a crack edge. The correction

provided by GTD is of order (wa/cL-l/z.

Basic tc GTD is the result that the incidence of a body-wave ray on the edge of a
crack gives rise to two cones of diffracted body-wave rays and two R-rays (one or
each crack face). The surfaces of the inner and outer cones of bcdy-wave rays
consist of L-rays and T-rays, respectively. When an R-ray intersects the edge cf
a crack, a ray of reflected surface wave mction is generated, as well as cones cf
diffracted body-weve rays. The anelytical details for the computation of the
fields or the diffracted ard reflected rays have been worked out by Achentach,
Gauteser. and McMaken, (1977, 1978a).

With GE and GTID the total displacement field is of the form

wh=t S 1

This result is not valid at the boundaries of the shadow zone and the zone(s) of
reflected waves. In a further refinement which is called uniform asymptotic theory
(UAT), the fields at these boundaries are corrected. For diffraction by a slit
details can be found in a paper by Achenbach, Gautesen and McMaken (1978b).

For incident waves with curved wavefronts and for curved diffracting edges, the
cones of diffracted rays have envelopes, at which the rays coalesce and the fields
become singular. The envelopes are called caustics, and GID breaks down at
caustics.

Within the context of the GID theory of Achenbach et al (1977, 1978a,b), the
diffracted field at a point of observation Q is comprised of contributions corres-
ponding to "primary" diffracted body-wave rays, which are directly generated by
incident body-wave rays, and contributions corresponding to ''secondary"
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diffracted body-wave rays. The latter are generated by rays travelling via the
crack faces.

Numerical results obtained by GID have been compared with exact results for normal
incidence on slits and penny-shaped cracks. Very good agreement was generally
observed, see Achenbach et al (1978b,c).

Diffracted L-rays in the solid. For normal incidence of a plane longitudinal wave,
the displacement vectors on the diffracted L-rays in the solid are

u = exp(ins/c;) (ws/cL)'l/2 (1+s/c)'l/2DI£(e) L0 ' (2)

Here S is the distance along a diffracted ray from the point of diffraction to the
point of observatiom, c. is the velocity of longitudinal waves, and 0 is the angle
of the diffracted ray with the diffracting surface. The geometrical quantities
are indicated in Fig. 1. The amplitude U defines the incident wave in the plane
of the crack, and C is the distance to the caustic. For a penny-shaped crack
under normal incidence the caustic is the normal through the center of the crack,
i.e., C = - a/cos®, where a is the radius of the penny-shaped crack. The vector

iT’ which defines the direction of the displacement, is radial from the point of
e L
diffraction. The dimensionless diffraction coefficent is denoted by DL(G).

Fig. 1. Diffracted ray from a crack tip in an immersed specimen.

Transmission across the solid-fluid interface. The incidence of an L-ray from

the solid side on a solid-fluid interface generates an L-ray of transmitted motion
in the fluid and reflected L- and T-rays in the solid. The geometry for a single
ray is shown in Fig. 1. Along the L-ray in the fluid the field is of the general

form
/

e exp(iwg/cF)(HE/"c‘)‘l/z @m0 ey U, Ay (3)

Here Cp is the velocity of longitudinal waves in the fluid, S is the distance from
the point of transmission A to the point of observation B, UA defines the incident
field at A, and the unit vector %F defines both the direction of the transmitted

ray and the displacement
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direction on that ray, see Fig. 1. The terms (1 + EVE)_l/Z and (1 + Eﬁib"l/z

follow from considerations of energy comservation in a bundle of rays in the
fluid. It remains to determine C, E, @L as well as the transmission coefficient

T(@L) as functions of the angle of incidence 81 Note that in the present geo-

metry OL =71 - 0 and 5L =7 - Bi. The derivation of E} i} éi, and T(@L) is
carried out in a paper by Achenbach, et al (1979b). The transmission coefficient,
T(O.), is determined from specific interface conditions. We assume, as is

usually done, that the normal displacement and the normal stress component are
continuous at the fluid-solid interface, while the shear stress in the solid
vanishes at the interface.

The COD-RT approach

In this section a hybrid theory is discussed in which the crack-opening displace-
ment (COD) is computed on the basis of elastodynamic ray theory, and the
diffracted field is subsequently obtained by the use of a representation theorem
(RT). The advantage of this approach is that the trouble with ray theory at
shadow boundaries and boundaries of zones of specular reflection is eliminated,
and caustics only need to be dealt with on the faces of the crack.

The field generated by scattering of incident waves by an obstacle with surface S
can be expressed in terms of a representation integral over S. For a stress-free

+ -
crack with plane faces A and A the representation integral can be simplified.
in

. i ' b i sc o g :
If the total field is writtem as u = u + u ~, where u is the incident field

and gsc is the scattered field, then at an arbitrary field x the latter can be
expressed in the form
uSC(x) = f X 0w A *)
g% W G s Bied Rl i =
A

Here the crack is in the XlXZ—plane and the positive X3

+
material at the A crack-face. Also Aui(X) is the crack-opening displacement

defined by

—axis is pointing into the

+ —
sc scA sc A
Lo o R R o (%)
and
TG = tensor of rank three (6)
133 %

which represents the stress-components at X3 = 0 due to a unit load in the Xj

direction at the point defined by X = x.

Equation (4) can be integrated numerically. A further simplification is, however,
achieved if it is assumed that the origin O is close to the crack while the source
S and the observation point Q are far away, see Fig. 2. The expression for

Tij-m then simplifies considerably. An explicit expression can be found in
Achenbach et al (1979%a).
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Fig.2.Flat crack with source point S and point of observation Q.

Physical elastodynamics

In the physical elastodynamics approximation only the leading contributions aris-
ing from the incident wave and the specularly reflected body waves are included

in au®C, Thus, the effect of the crack edge on the displacement discontinuity of
the crack faces is neglected. This is thought to be acceptable if the wave-
length is sufficiently smaller than the cross-sectional dimensions of the crack.

on the faces of the crack the spherical wave emitted at S is locally approximated
by a plane wave:

iR i
Y Xg GL(XS) exp ( 1kL§S.§) > Xg E2 (7)
where
GL(XS) = (l/éﬂxs) eXp(lkLXS) (8)
= /e = () /o ©
k i, B BT
and %S=§s/xs > Xg = ‘gsi 5 K= I§| . By using some well known results for reflec-
tion of plane waves we then find
sc GE _ L S
Au”" ~ EEahE A AU GL(XS) exp ( 1kL§S.§) (10)
where
U(¥S) =-B - RLEL K RTQT (11

Here p, By, and QT are unit vectors defining the displacement directions of

the incident and reflected waves, and RL and RT are the reflection coefficients.
For a crack of elliptical shape the resulting expression for the scattered field
which follows by substitution of (10) in (4), can be evaluated to yield an

ordinary Bessel function of order one (Adler and Achenbach, 1980).

The Inverse Problem

Previous sections have been concerned with the direct problem, that is the com-
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putation of the scattered field when the size, shape and orientation of the crack
are known. In this section we consider the inverse problem for plane waves
incident on cracks, for the special case that the diffracted field is symmetric
relative to a plane of symmetry of the crack. The geometry in the plane of
symmetry is then essentially as shown in Fig. 3, where the erack is under
an angle 60 with the fluid-solid interface. For a given point of observation,
say the point B in Fig. 3, the unknowns then are @0, a and b.

Fig. 3. Geometry in the plane of symmetry of a penny-shaped crack.

The frequency spectrum of longitudinal signals contains a considerable amount of
information on the crack. To obtain the size and orientation of the crack,
experimental information can be used both for direct comparison (particularly of
the amplitude modulation) with analytical results and as an input to an inversion
integral. These interpretations of experimental results, which both lean heavily
on theoretical results, will now be discussed.

Direct interpretation of amplitude modulations. The interference patterns for the
first arriving longitudinal waves in the fluid are generated by phase differences
and amplitude differences on the direct rays from the two crack tips. Adding the
primary diffracted longitudinal fields from the points Ol and 02, we obtain after
introducing some far-field simplifications

u - F(0,0o) exp[lw(s/cL + S/cF) + iw/4] U0 éF 12)
where
F(0,0o) = H1 exp[—l(wa/cL)(cosO - sin@o)]
+H, exp[l(wa/cL)(cose - sin@o)] (13)
The terms Hl and H2 do not depend on the frequency. Explicit expressions for
H, and H, are given by Achenbach et al (1979b).

1 2

Of particular interest is the absolute magnitude of F,

|F| = {Hi + H2 sin[Z(wa/cL)(cose - sineo)]}l/2 (14)

2 + 2H1H

2

This result implies that the amplitude of the primary diffracted field is modu-
lated with respect to w/cL with period
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" alcos® - sind
o

Application of inversion integrals. Inversion integrals for crack-scattering data
have been discussed in some detail by Achenbach et al (1979a).

EXPERIMENTS

Experimental System

The details of the ultrasonic data acquisition and processing system have been
discussed by Adler and Achenbach (1979b, 1980). A SCR pulser produces a fast
rise-time high voltage (162 volts) negative spike with an exponential return to
zero. This wide band electrical pulse excites an untuned, highly damped ceramic
transducer with center frequency of 10 Mhz. The ultrasonic pulse (pulse length ~
1 usec) which is produced contains a broad band of frequencies. Ultrasound
scattered by the target is received by either [1] the transmitting transducer
[pulse-echo] or [2] a receiving [identical] transducer [pitch-catch]. The
electrical pulse produced by this receiving transducer is amplified by a wide
bandwidth gain stage. A stepless gate is used to select a portion of the recei-
ved signal for further analysis. Signals falling outside the gated regions are
highly attenuated. An oxtilloscope displays both the entire receiver output and
the section of waveform passed by the gate.

The frequency content of the gated waveform is produced by an analog spectrum
analyzer. The gated pulse may also be captured and stored through use of the
digital acquisition system. A transient recorder samples the ultrasonic signal
at 100 MHz, and stores the amplitude at discrete times in its digital memory.
The minicomputer controls the acquisition of the ultrasonic pulse and then trans-—
fers the digitally represented signal from the recorder to the minicomputer
memory. The signal may also be permanently stored by recording it onto magnetic
tape. Processing of the ultrasonic signal [Fast Fourier Transform, correlation
and deconvolution] is performed on the minicomputer. An electrostatic plotter
provides a visual display of pertinent information. For the Fourier Transform
both amplitude and phase spectra can be calculated. In this experiment the
amplitude spectra are used only. The digital amplitude spectra is monitored by
the analog spectra [i.e., the spectrum offered by the spectrum analyzer].

TRANSMITTER
REC POSITIONS

SCATTERED T WAVE-
WATER __\INCIDENT L WAVE
TITANIUM 1.6

INCIDENT T WAVE

SCATTERED L WAVE -

Fig. 4. Experimental configuratiom.
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Experimental Technique

The configuration for the experimental work is shown in Fig. 4. The sample con-
taining a defect with flat faces is immersed in water. The transmitter launches
a longitudinal wave to the liquid-solid interface at some angle. For nonnormal
incidence both L and T waves are produced in the metal. The cavity can be in-
sonified either by the L wave or by the T wave with incident angle a. At the
cavity the waves are scattered and mode converted. The scattered waves are
received and analyzed separately due to their separation in arrival time.

A specially designed goniometer is used to mount the transmitter and the receiver.
The position of both transmitter and receiver in polar angle can be changed
separately. A special feature of the gOniometer is its flexibility of keeping
the polar angle fixed and varying the azimuthal angle. This latter feature is
especially important for noncircular cracks because of the asymmetry in the
scattered field along the different directionms.

Data Correction

In order to analyze the experimental results based on the analytical prediction,
the effect of the transducers and the crack had to be separated. In a linear
time variant system this is done in the frequency domain by dividing the fre-
quency response from a system by the so-called transfer function. In this prob-
lem the spectrum of the transmitted signal through the material [without the
crack] is considered the transfer functionm.
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Fig. 5. Amplitude spectra of scattered longitudinal waves
COMPARISON WITH EXPERIMENTAL DATA

For normal incidence of a longitudinal wave on a penny-shaped crack, the field
corresponding to scattered longitudinal waves at the point of observation in the
water has been computed by adding the two contributions according to Eq.(3)
emanating from the two crack tips. Analytical and experimental results are com-
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pared in Fig. 5. The analytical amplitude spectra are plotted by the solid lines
while the experimentally obtained amplitude spectra are shown by the circles. The
frequency varies from 2 MHz to about 14 MHz. The scattered angles (ei =1/2 - GL)

are 350, 450, 550, and 600, respectively, in the solid. The amplitudes of the
first cycles agree well for all angles. At higher frequencies (above 6 MHz) the
experimental results are lower than the predicted theory. One possible explana-
tion is the effect of attenuation which is not accounted for in the theory. In
all cases the positions of maxima and minima of the spectra agree, however, very
well between theory and experiment. The positions of these maxima are significant
for the inversion procedure.

For normal incidence of a longitudinal wave on an elliptical crack of semi major
and semi minor axes of 2500u and 1250, respectively, the scattered field accord-
ing to the physical elastodynamics theory is compared with experimental results in
Fig. 6. Considering that the theory is very simple the results can be considered
very satisfactory. The experimental results decay faster with frequency than the
theoretical ones, but the spacing of the peaks shows very good agreement. It is
noted that the inclusion of some damping in the theory improves the agreement.

® o s 00 EXPERIMENTAL
THEQRETICAL (WITHOUT ATTENUATION)

---- TheoreTicAL (CORRECTED FOR
ATTENUATION)

RELATIVE AMPLITUDE

v
0.00 2,00 4,00 6.00 8,00 10,00 1200 14700
é Frequency (MHz)

Fig. 6. Comparison of theory and experiment for a crack
of elliptical shape, for normal incidence and a
scattering angle ei = 60° in the plane of the
major axis.

Finally we show an experimental verification of Eq.(15). 1In the experimental
results shown in Fig. 5 the plane of the crack is parallel with the fluid-solid
interface, and hence 90 = 0. From each amplitude spectrum in Fig. 5 we can then

obtain the radius of the crack. The radius a of the crack follows from Eq.(15) as
e

15
e Ll T 16
S Sin(8)A(E_ ) (16)
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My
2
secutive maxima.

where e£ = 0 and A(fmax) is the average frequency spacing between two con-

In Table I the result of the size determination from the spectral components of
the diffracted wave is given. The agreement between actual crack size (a = 2500u)
and the predicted value is excellent. The largest deviation is 3.7 % .

TABLE 1 Computation of the Crack Radius from Ed.(l6)

Scattering Angle 9£ A(fmax) Computed Radius of the Crack in u
35° 2.18 2530
40 1.87 2630
45 1.83 2450
50 1.68 2460
55 1.60 2410
60 1.47 2500
65 1,39 2510
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