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ABSTRACT

A model for the cavity nucleation process based on the recent
developments which have occurred in the understanding of the
structure of grain boundaries is presented. The concept of grain
pboundary degeneracy is used to model the dynamics of high angle grain
boundaries at elevated temperatures as a stochastic process on a two
dimensional random Ising lattice. This model predicts a continuous
grain boundary phase transition at approximately one half the
absolute melting point, which is the region of most interest as far
as the creep rupture of engineering alloys is concerned. 1In this
regime the kinetics of cavity nucleation under low tensile stresses
are dominated by group processes and an analytic estimate of the
initiation time is made. The model is tested by its application to
thé creep rupture data of 316 stainless steel for which a good fit is
obtained.
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INTRODUCTION

There is a longstanding engineering problem in being able to reliably
extrapolate creep rupture data which is generally measured at
temperatures above the service temperatures and for shorter times.
There are several methods for extrapolation of creep rupture data in
current use (McLean, Dyson and Taplin, 1977; ASME, 1979), based on
either reaction rate theory and assuming that the Monkman-Grant
relationship holds, e.g. Larson-Miller or Manson-Haferd, or assuming
a phenomenological Kachinov damage type summation, which are useful
in certain circumstances. However as Ashby (1977) has recently
emphasised these methods may lead to a non-conservative extrapolation
of creep rupture data through an inadequate appreciation of changes
in creep fracture mechanisms and/or the material's microstructure.

In the majority of service applications the main creep fracture
mechanism is the initiation and growth of voids, either wedge cracks
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or cavities, at the grain boundaries. The diffusional growth of
these defects is reasonably well documented and understood, but the
problem of nucleation kinetics has received relatively little
attention. This can lead to considerable difficulties in applying
the predictions of mechanistic models to such important engineering
materials as AISI 316 stainless steel where there are very long
initiation times for void nucleation. Raj and Ashby (1975) and Raj
(1978) have, with limited success, applied classical nucleation
theory to estimate incubation times for void nucleation. The present
investigation concentrated on developing a stochastic model for the
nucleation process based on the recent developments which have
occurred in the understanding of the structure of grain boundaries
(Pond and Vitek, 1977a, 1977b; Smith, Vitek and Pond, 1977; Ashby and
Scaepen, 1978).

A MODEL OF VOID INITIATION

It is now recognised (Pond and Vitek, 1977a, 1977b; Smith, Vitek and
pond, 1977; Ashby and Scaepen,1978) that the structure of grain
boundaries can be considered as a random close packed arrangement of
atoms. More importantly though, numerical analysis combined with
experimental transmission electron microscopy on symmetrical grain
boundaries (Pond and Vitek, 1977a, 1977b), has shown two crucial
features which shall be used in developing the model. (i) The grain
boundary is very narrow with atoms in the boundary conforming to a
two dimensional random close packed structure. (ii) The grain
pboundary structure is degenerate, i.e. there will be several atomic
configurations of the same energy, and in the case of symmetrical
boundaries each structure is characterised by a particular
translation.

Although the above calculations refer to stuctures at absolute zero,
i.e. entropy is not considered, and symmetrical boundaries which
account for less than 1% of the grain boundaries in a typical
stainless steel (Pumphrey, 1975), the conclusions can be used to
develop a model for the majority of grain boundaries i.e. random high
angle bondaries at temperatures up to about half the absolute melting
point of the material.

Consider an interface between two crystals A and B. We define the
grain boundary as the set consisting of those atoms which by a small
thermally activated displacement (in a real or phase space) will
assume a low energy configuration with respect to the crystals A and
B. It is hypothesised that there is more than one low energy
configuration (state) and is a fundamental tenet of the model which
cannot at this stage be theoretically, a priori, justifled but is
supported by numerical analysis (Pond and Vitek, 1977a, 1977b). On
the basis of the work cited above then, it is clear that the set of
atoms will define an approximately two dimensional random close
packed array. Thus we can say in a formal manner that atoms in this
set may exist in two states and transitions between these states may
be accomplished by interaction with a heat reservoir. Figure 1
schematically depicts this situation.

Consider now one of the crystals, say A, and let the state in which a
grain boundary atom is "bonded" preferentially to B be defined as 0
and to A be defined as 1. We define the parameter Z as the
concentration of thermally activated sites in state 0. In the low
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temperature limit Z must tend to zero. Further consideration shows
that there must also be a high temperature limit. This arises since
under equilibrium conditions we could define the system entirely
equivalently with respect to B rather than A. The value of Z must be
invariant with respect to the choice of reference system. This leads
to a value of % restricted to 3. The presence of a tensile stress
across the boundary will destroy the symmetry and as shown below lead
to correlated grain boundary decohesion. ’

An applied tensile stress of magnitude O normal to the boundary will
give rise to a change in chemical potential of 0, where ( is the
atomic volume. Therefore Z becomes zexp(ofd/kT), where k is
Boltzman's constant and T is the absolute temperature.
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Fig. 1. Degenerate energy levels of grain boundary atoms.

Even though the potential surface shown in Fig. 1 is not well known,
we can estimate the rate of transitions at high temperatures using
absolute rate theory (Christian, 1975), viz. y=kT/h, where p is the
rate and h is Planck's constant. The solution to this dynamical
model would be trivial were it not for the strongly interacting
nature of the grain boundary set. It is clear that this must be a
positive ferromagnetic-type interaction between neighbours, thus
damping the transitions. If the interaction were limited to nearest
neighbours, then the model conforms to the kinetic Ising model on a
random close packed lattice (Glauber, 1963; McCoy, 1972; Kawasaki,
1972). Consequently there must of necessity be a phase transition,
and furthermore the transition temperature will be at 0.5x the
absolute melting point of the material T (Wang and others, 1965).
This confirms Hart's (1968, 1970, 1972) predictions but with a
fundamental distinction. The grain boundary phase transition is not
first order as Hart suggested, but is continuous (high order). Since
this phase transition is continuous we can in principle make
predictions across the transition.

Much of the current theoretical work (Stanley, 1971; Ma, 1976;

Pfeuty and Toulouse, 1977) has used renormalisation techniques to the
extract critical exponents which characterise the singular
divergences of thermodynamic parameters. Here we use renormalisation
(Ma, 1976; Pfeuty and Toulouse, 1977) to estimate the incubation time
for a cavity nucleation event.
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The application of a tensile stress across the boundary defines a
stable void of radius r=2%/0, where 7Y is the surface energy. The
number of atom spaces in the void will be

(1) N=8Fy3/03Q

where F, is a geometrical shape factor. We then partition the
boundary set in blocks of size n and hence analytically derive a
probabilistic estimate for the expectation time t; for a correlated
region of atoms in state 0 of size n within a larger block of size N
to appear (Boyd, 1980).

(2) t;=7N"1(zexpogQ /kT) D

where T=V"l. This procedure involves a scale change of s=n3 and
providing we are sufficiently close to the transition temperature
(%Tm) we can use the concepts of universality to identify n3 as a
correlation length £ and furthermore the time to form a correlated
region will be the rate determining step for cavity initiation. There
are in principle therefore three nucleation regimes (Boyd, 1980),

(a) N3 }»g No nucleation (low stress; low temperature)

(b) N3 < Immediate nucleation (high stress; high temperature)

(c) N3 ~¢ delayed nucleation (intermediate stress; T~0.3-0.5Tp).

So a probabilistic estimate can be made for (i) o0=kT/Q, (ii)T~
0.3-0.5T, and (iii) N3i~¢ as follows:-

(3) tj= _ho3Q (zexp gQ/kT)~ D
KT8F Y3

The physical interpretation of the above analysis leading to equation
(3) is that at high temperatures (greater than about %Tm) the
boundary is fully activated and grain boundary sliding will
predominate. At temperatures less than 3T, the boundary tends to be
pinned: by unactivated sites but at sufficiently long times correlated
grain boundary decohesion will occur leading to nucleated cavities
which can grow by plasticity and/or diffusion. These time dependent
processes are dominated by the continuous phase transition which
occurs at about 3Tp. Further extension of the model will require
renormalisation group concepts (Ma, 1976; Pfeuty and Toulouse, 1977)
and/or Monte-Carlo simulation methods (Penrose, 1978; Binder, 1979),
and work is in hand in this direction.

EXPERIMENTAL

An AISI 316 stainless steel was chosen for this study because of its
actual and potential uses in structures operating at elevated
temperatures i.e.=Z 3Ty and low stresses 0=ZkT/{) . The composition is
given in Table 1. The heat treatment of the 316 prior to testing was
solution treating in vacuo at 1323K for 1 hour followed by air
cooling. The microstructure was precipitate free with an average
linear intercept grain size of 1l4uwm. Creep rupture data were
obtained using pin-loaded specimens of cross-section 4mm x 4.5mm and
gauge length lémm. Specimens were tested using constant load creep
machines at 909K. Selected tests were interrupted prior to failure
for destructive metallographic examination.

TABLE 1 Chemical Composition of Steels (in weight per cent)
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Cr Ni Mo C B Mn s
AISI 316 [|16.9 (12.5( 2.4 |0.03| <0.001 (0.028{ 1.66( 0.013
BSCC 316 (17.0 (11.7| 2.4 (0.04{ 0.0001 - 1.65{ 0.024
P Si Al Sb Sn v Nb
AISI 316 (0.032( 0.27 |0.007| 0.002{( 0.018} 0.08 0.01
BSCC 316 {0.024} 0.30 - - - - -

RESULTS AND DISCUSSION

Metallographic examination (Boyd, 1980) has shown that the creep
fracture of AISI 316 stainless steel between 800K and 1000K is

generally dominated by the initiation phase (i.e. tj/t

f~0.8) with

grain boundary voids evident only in the very late stages of creep.
Figure 2. shows a scanning electron micrograph of the section of a
specimen which was interrupted just prior to failure (tf~4x1065,
interrupted time =0.99tg).

Fig.

2. A SEM micrograph of the interrupted test

On the basis of this observation we can strongly argue for the
replacement of tj by tg in equation (3) which can now be written as

(4)

where

In(tg/03)

a= h{Jz~n
KT8F 73

In(A) + BO

and B=
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For 316 stainless steel Tp=1810K, Q=1.21x10"2%3, and y=2.0Jm™2
(Frost and Ashby, 1975). Fy=4/37 was taken for a spherical void.
This and other approximations made are reasonable because of the
strong exponential dependence of the parameters Z and n. By plotting
ln(tf/g ) as a function of 0 we can obtain the two temperature
dependent parameters Z and n (Fig. 3, Table 2.). Figure 3b shows
that using equation (4) can lead to conservative extrapolation of
data.
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0 (MPa) 0(MPa)
Fig. 3a Results for AISI 316 Fig. 3b Conventional log-log
plotted according to plot of the same results
the model. as Fig. 3a.

TABLE 2. Summary of Results on 316 Stainless Steel

Data Source iy T/ T 7 n
Boyd, (1980) 909K 0.49 0.399 83.8
BSCC, (1971) 823K 0.45 0L1LE78 41.8

% " 873K 0.48 03587 74,2
s # 898K 0.50 0.424 89.6
ki 5 923K 0.51 0.382 5.9
b ” 948K 0,52 0.436 86.9
. o 973K 0.54 0.521 1132

The values of the temperature dependent parameters z=0.398 and n=84
for the steel considered in this work satisfy the predictions of the
theory with Z below but close to the restricted value of 3 and n
indicating a reasonable correlation length of about 9 atoms. As an
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additional test for the model BSCC (1971) data on another cast of
AISI 316 stainless steel (Table 1.) is considered in Fig.: 4. The
values of Z and n obtained are shown in Table 2. and clearly satisfy
the predictions of the model.
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Fig. 4. BSCC data at temperatures between 823K and 973K

These results confirm that the mechanism of cavity nucleation
described above is probably correct. A more complete interpretation
of the temperature dependent parameters Z and n will be published
elsewhere (Boyd, 1980). We emphasise however that the foregoing
analysis is perhaps more useful in characterising the mechanisms in
cavity nucleation and it is still too early to say whether this
analytical model can be used in its present form for prior prediction
of rupture times. It is anticipated that the work in hand using
Monte-Carlo computer simulation methods will prove to be more useful
for this purpose. Nonetheless some oOf the implications of the
analysis will be examined. Precipitates and plastic flow tend to
shorten the incubation time by respectively reducing the interfacial
energy and increasing the local stress across the boundary, while
impurities strongly influence the time dependent behaviour of the
correlation length.

CONCLUSIONS

On the basis of the limited success of the model applied to 316
stainless steel we can draw a number of conclusions as follows:-
(i) The grain boundary undergoes a phase transition at about %Tm.
(ii) At temperatures close to the transition temperature correlated
grain boundary decohesion can occur due to large scale stress induced
fluctuations.

(iii) The nucleation mechanism below 3T, is qualitatively and
quantitatively different from above %Tm because of complicated
divergences in certain thermodynamic parameters.

(iv) Extrapolation on a log-log plot can overestimate creep rupture
lifetimes.
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