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ABSTRACT

In this paper the development of special laminated "crack-elements' and "hole-
elements", with embedded analytical asymptotic solutions, and based on a comple-
mentary energy principle with subsidiary constraints, is reported. Application
of these special finite elements in fracture analyses of angle-ply laminates is
discussed. Detailed results and discussions are presented for the cases of a
through-thickness crack and a through-thickness hole in a four-ply, (#45)s, lami-
nate.
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INTRODUCTION:

In general, angle-ply laminates are composed of a stack of layers each of which
contains uniaxial fibers and have, theretore, preferred directions. Because of
the non-homogeneous structure of these laminated composite materials, several
failure mechanisms such as: Fiber-matrix separation in each layer, separation or
debonding of layers, and non-self-similar growth of cracks in one of several, or
all of the layers, may exist under the action of general external loading. In
this paper we pay attention to the fracture-mode of failure, and its possible
interaction with delamination, of laminates with through-the-thickness cracks and
fastener holes.

Specifically, we consider a symmetric angle-ply laminate of the form (iBlhl/
tBZh,/t.../tBnh ) where B_ and h_ are, respectively, the orientation and

thicéness of the nth anglg—ply cgmponent of the laminate. We consider the cases
of cracks and holes through the thickness of the laminate, and consider the crack-—
axis to be parallel to the fiber orientation of the Kth-ply. Thus, even though
the crack is located symmetrically with respect to the preferred material di-
rection of the Kth-ply, it is, in general, oriented unsymmetrically with respect
to the material directions of all the other plys, n#K. Thus, in general, mixed
mode crack-tip conditions, which vary from layer to layer, may exist in the
laminate. Likewise, in the case of a hole, in general, stress-concentrations,
which vary from layer to layer, may exist in both direct as well as shear stresses.

It is the objective of the research reported herein to develop efficient (finite
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element) analysis procedures to determine the mixed mode stress—intensity factors
in the case of cracks, the stress-—concentration factors in the case of holes, and
their variation in the thickness-direction of the laminate, within each layer as
well as from layer to layer. The method described herein is based on a comple-
mentary energy principle with subsidiary constraints such that: (Z) each layer
of the laminate is treated as an anisotropic medium and the material properties
in the laminate global coordinates vary from layer to layer, (Z7Z) the 3-dimensional
stress—state, including the interlayer normal and shear stresses, is accounted
for; (Zi7Z) the analytical asymptotic solution for stresses near the crack

(the stress-solution being singular) and near a hole, in each layer, are embedded
in special "crack'" and '"hole" elements near the crack-front; (Zv) the assumed
equilibrated stress-solution in the laminate is such that the interlayer traction
reciprocity condition is satisfied a priori, but the planar stresses in the plane
of the laminate are allowed to be discontinuous at the interlayer interface, (v)
each finite element consists of the entire series of layers in the laminate, (v7)
the inter-element traction reciprocity is enforced, a posteriori, in the varia-
tional formulation, through a Lagrange multiplier technique, and (vii) the pro-
cedures developed herein lead to a direct evaluation of the mixed-mode stress—
intensity factors (and their variation) near the crack-front and of the stress-—
concentration factors (and their variation) near the hole.

In the present paper, a brief outline of the analysis procedure is first given.
Detailed results for the problems of (¢) a through-thickness crack, and (i) a
through-thickness hole in a 4-ply (#45°)s laminate are given, and their implica-
tion in the prediction of failure of the laminate is discussed. The present re-
sults are compared with other independent solutions when available, and the re-
lative merits of the present procedure are noted.

OUTLINE OF ANALYSIS PROCEDURE:

Consider a system of cartesian coordinates (x,,X.,x,) such that x, is the thick-
ness-coordinate of the laminate, and, in the caSe of a crack, x, and x. are co-
ordinates along and normal to the crack-axis, respectively, cen%ered at the crack-
tip; while in the case of a hole (x, and x,) are coordinates centered at the cen-
ter of the hole. We also consider cylindrical polar-coordinates (r,6,x )., in beth
the cases, such that x_=r cos 6 and x,=r sin 6. We consider K layers in the lami-
nate, and the kinemati® and mechanica% variables in each layer are denoted by a
superscript i, such that i=1,2,...K. We assume that the interlayer interfaces

can be denoted by x.,=constant, and denote by x% the x, coordinate of the inter-
face between the it and (i+1)th layers, ... * " x9Q is”the coordinate of the
bottom surface of the laminate. In the complementary energy principle,one hus
to assume an equilibrated stress-field in each layer, i=1,2,...K, such that:

V.o' = divgl = 0 ' (1
Gi e i ci =0 at x,=0 x,<0 (in the case of a crack) (2)
205 S 2k, 923 205 1 i

or =g, = 6 =0 at r=a (in the case of a hole) (3)
b d r3 ro

where it is assumed that the body forces are zero, and that x,<0 in Eq. (2) rep-
resents the presently considered case of an edge crack in the laminate. Further,
the stress-tensor gi in each layer is expressed either in cartesian components

or cylindrical polar coordinates alternatively, and that the gradient opertor v
is thus appropriately expressed in either of the two alternative coordinate sys-—
tems. The interlayer traction reciprocity conditions for the presently considered
laminate are:
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38 T RE R T e = Ly Bt s b
s i
oF g, = . @-1,2,3) at X4=x (5)
Thus in the present case of a multilayer laminate, wherein each layer is modeled
as an sriscton ’c medium at the macroscopic level, the in-plane stresses ol  are
such that, in general, a priori, o
i il o, ) i
%8 # OGB (a,B=1,2 or r,0) at X=Xy (6)

In the present case, the laminate is modeled by two types of finite elements; (Z)
~ g " . .
special "crack" or "hole" elements immediately near the crack-front or the hole,
B
and (¢7) '"regular" elements away from the region of a crack or a hole. In

general, a stress-field satisfying Eq. (1), as well as Egs. (4) or (5), a priori,
is chosen in each element, as:

gl g qlb & glR (7
wherein the additional superscripts denote "special' and "regular" fields, res-
pectively. TIn the case of "crack" and "hole" elements, both ¢15 and ¢iR are in-
troduced, while in the far-field elements, only iR g introduced. It is noted

that in the present case, the functions giS satiéfy, in addition to Egqs. (1,4 or 5)
the boundary conditions Eq. (2) or Eq. (3), as well, a priori. The functions ;
qu w?ich do not satisfy Eq. (2) or (3) a priori, are forced to satisfy these
equations, in the case of "crack" or "hole" elements, through a Lagrange multi-

plier technique, analogous to a point-matching technique, given by Atluri and
Rhee (1978).

The details of the procedure in deriving the appropriate GlS are omitted here,

but are indicated elsewhere (Nishioka and Atluri, 1980a; 1980b). However, the
end results are as follows: .

(£) case of a crack:

Gy R ) :
/7w otS = %Fulm + —2/;“3%11(0) 1 KZ,33(r)3/2%cos(%e)
"K;zz(r)m%sm%o) S Gl ) 2Re[5] (cosesising) /3
/2 oy = %Flzz(’j’) i _K%Fzzz(o) - Ki,?ﬁ,(r)y2 {'%COS(%G)
~csino(leoso M2} 4kl ()32 {gsin(%» + 26(|eose])>/?}
: 3 3

i /2 i ' :
+ K;,3(r) : {‘ZRe[(l/S;) (cosG+SlsinO)l/2] + ZC(ICOSel)l/ZRe(i/Sé)}

3
o K o)
= is _ M1%3 2 (%5
2w 612 = F112(6) + TFZlZ(G)
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, Ki(x ) . :
/Zr 615 = %]:—31?313(5) - KZ,B(r)l/zcos(e/Z) + K;’3(r)l/zsin(6/2)
2 Ki(x ) "
fis =3 P 1/21
Vor Uyy = —7%—-—F323(e) + K4,3 V(1) (-sinb/2) + Clxﬂ {
+ Ké 3(r)l/z(—cose/z)
Vor 033 = 'TCOS(Q/Z) + /__*sin(e/Z) (8)
T

In the above F,uB[j=l,2,3;a,B=l,2]are functions in the basic singular solution
nearthe crack-tip in two-dimensional Modes I and II problems for an anisotropic
medium (Sih, and Liebowitz, 1968); while F (6) and F (8) are functions in the
basic singular solution near the crack-tip~in two-dimenSional Mode III (anti-
plane shear) problem for an anisotropic medium (sih, and Liebowitz, 1953). Like-
wise, ST i3 a complex number depending on the elastic compliance coefficients of
the ith~ lamina (Sih and Liebowitz, 1968). The notation, KZ 3=3KZ/Bx3 45 used.
: 2

(Z2) case of a hole:
3 ‘fl. a a oy

, E T r o f

iz i (sin20

S

In the above, o "“g are continuous functions in x.. In the remainder, for want
of space, only %erms symmetric in 6 will be given, while the anti-symmetric terms
in 6 can be derived by observation.

9533

bwm

6} [e7

4 6
o S

r T

~
=

150 2 1 B0 4 e
063 = a2,3 + a4’3 + 5 a6,3 + u8,3 cos26
14 4y 4r 4r ’
=1 -1 -2 -1-1 -3 -2-1
_ _ (1-ar’) o B T (r"™-ar) (r/=a"r") AL
%3 g s T ey Tom % g ey ‘ €o520
3-2 2-2 -1 =2 =2
o ‘ _ (r-a’r") _(1-a"r) _ (r7-ar?) SR
%or | 24 2,33 16 4,33 B 60 g 5w

cos28 + ag(XS)Fre(r,e)

9q = 'g‘ %0‘1,33 - %"3,33 i %’2‘“5,33 5 %2“7,33 ’ €0s28 + ag(xy)Fy (r,6)
o {(-48a+l7r+32a2;£8a3;ia1’33 i %(8111—2 S % 2;2_2)&3,33
* %é - lrél“i - % - 4_3)&5,33 * %<iz Lo + i2 i _153? * ”97)0‘7,330
T r a i o3 ‘
cos28 + ugFrr(r,e) (9)
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It is noted that in Eq. (8) Kl, Kl, and K. are assumed to be Hermitian polynomials

in each lamina such that thesé functions Are continuous at interlayer interfaces;

thus the interlayer traction reciprocity is satisfied a priori. However, the

4 i 1 : ; 4 A
functions Kj and K; are allowed to be discontinuous at interlayer interfaces,
since 0& (a,B=1,2) may be discontinuous at x%. Likewise, in Eq. (9), @ ...0q are
continuogs functions in x.. However, aq is discontinuous at xlsland B oy By, land

F 9 are asymptotic solutidns near ahole in a 2-dimensional anisotropic domain
(5dvin, 1961).

The details of assuming glR such that Eqs. (1), (4, or 5), and (6) are met, a priori,
are omitted here and may be found in (Nishioka, and Atluri, 1980a).

Finally, if Vrl is a finite element and BVn its boundary (note that in the present

procedure, each finite element consists of the entire stack of lamina), the
traction reciprocity condition at the interelement boundary, namely,

(g )" % (mug ) = 0 For each el ol (10)

where (+) and (-) denote, respectively, the two sides of 3V and n is a unit
normal to 3V _. The above constraint condition, which is impossible to satisfy
a priori, in general, is enforced in the present procedure through a Lagrange
multiplier technique.

Thus the modified complementary energy principle for the finite element assembly
can be written as:

e | f woghydv - [ tt.u%ds + Tl.Ul"‘
Mo n i e il e o ’
l Vi avi S
s i n on h
where W is the complementary energy density (unit volume) of the i lamina which
depends ‘on the ply elastic-constants and the assumed ol. The integral on avi is
the term which enforces the constraint condition of Eq. (10) through Lagrange

multipliers Ul chosen at 3Vi. The assumptions for H} are not detailed here,
but may be found at (Nishioﬁa, and Atluri, 1980a).

Edge Crack in a (#45°)s Laminate:

The geometry of the 4-ply laminate is shown in Fig. 1, while the finite element
mesh is shown in Fig. 2. Only the upper half (in thickness direction) of the
laminate is modelled.

FIGURE 2

FIGURE 1

The geometric and material property data are: (L/W=1.0;h=4h _; a=0.2W; (h /W)=
(1/100). The ply elastic constants, in the ply principal directions, are:
Ell=20x106psi; E22=2.lx106psi; E33=2.1X106psi; G12=G23=Gl3=0.85x106psi;
vlz=v23=v3l=0.21. The problem is studied for the case of uniaxial tension shown
in"Figl 177 Note that the present finite element-mesh consists of a total of 2000
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d.o.f. The present problem was also studied by Wang,Mandell and McGarry, (1977)
using the finite element method development by Mau, Tong, and Pian (1972), who
do not account for any crack-front stress/strain singularities. Thus, to extract
a meaningful solution, Wang et. al. (1977) use two meshes, the outer mesh with
about 1800 d.o.f. and the second inner mesh, near the crack, with about 1950
d.o.f.

. il i :
Fig. 3 shows the directly computed stress-intensity factors K, and K, (in the in-

P . . -1 . " i
plane stress ﬁlj in each lamina, i=1,2) and K} (in the transvérse normal or 'peel

stress ol,). 8ich results were not presented in Wang et. al. (1977) since the
procedures they employed do not permit a convenient extraction of these factors.
0.03 3000

2
(-45/45745)-45°) 600
05
025 > 0
& Ko Ry
10 0.0
K/o{na e
FIGURE 3 @03

FIGURE 4

From Fig. 3 it is seen that at the point of incipient fracture, if the direction
of crack-growth in each lamina is assumed to be determined by the magnitudes and
signs of K, and K, crack-growth will occur in different directlogslln each of
the lamina. This’ then, provides a rational model for non-self-similar growth of
cracks in multilayered laminates. Figs. 4 and 5 show the contours of the inplane
stress o (at the mid-section of each lamina) near the crack-tip (x,,%,=0).
Likewisezgigs. 6 and 7 show contours of the inplane stress ¢ 1 and 616' The
results in Figs. 4 to 7 correlate well with those in Wang, et. ale (1977), and .
these point to the relative efficiency of the present method, wherein the s?lutlon
for detailed stress, as well as the intensity factors, were obtained in a single
stage using only 2000 d.o.f.
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The variation of interlaminar shear stress near the crack-front, along with the
comparison result of Wang et. al. (1977) is shown in Fig. 8, while the variation
of interlaminar normal stress (note that the procedure in Wang et. al. 1968; ig-
nores the effect of 013) is shown in Fig. 9. The results in Fig. 8 and 9 do indi-
cate a peak in the ingerlaminar shear and normal stresses, thus providing a model

for the coupling of the process of delamination with that of fracture, in a lami-
nated composite.

003
3 ., — Present 104
X% ¢ --Wang et al T35 atf
0 v\ : X3=1.0 h, interface
0 —S i (Interface) .
100 E
< | o)
-003 ey
-003 XJ/W 0O 003 005 ol S/ W
- DB OESeRceTerank
F
FIGURE 7 fenpn. FIGURE 9

Fastener Hole in a (tASO)s Laminate:

> % (-457+45°)¢ . j ] 3 .
- first lauer Thg pr?blem is qeplcted in Fig. 10. és shown in
i e e Byer th1§ flgure, using the'arguments of %1near super-

position, the problem is decomposed into two

simpler problems: (Z) (0°/90°)s laminate under
biaxizl tension, and (ZZ) (0 /90 )s laminate under
pure shear. Each of these two problems is solved
by modeling only a quarter of the laminate as
shown in Fig. 11.

The variation of circumferential stress o,,at the
mid-plane of the laminate, along with a comparison
result of Rybicki and Hopper (1973) who use a clas-
sical Rayleigh-Ritz type 3-dimensional approach
based on the virtual complementary energy principle,
is shown in Fig. 12. The variation of transverse
normal stress at the mid-plane of a lamina, along
with the comparison results of Rybicki and Hopper
FIGURE 10 (1973), is shown in Fig. 13. It is seen that while
the present results for o correlate well with those of Rybicki and Hopper (1973),
the correlation between tgg two sets of results for o is rather poor. However,
it should be noted that Rybicki and Hopper (1973) deriVve a 3-dimensional equili-
brated stress field from 3 Maxwell-stress functions, which are assumed to be
continuous polynomials in all the 3 coordinates x; (4=1,2,3). Thus, in Rybicki
and Hopper's (1973) formulation the additional artificial constraint that even
the inplane stresses ol, (a,B=1,2) are continuous at the interlaminar interface

x> was imposed. This may partly explain the discrepancies shown in Figs. 12 and
135

The above results for the stress-field near an un-loaded fastener hole in a lami-
nate demonstrate the significant differences between the cases of an anisotropic
laminate and isotropic homogeneous media. The problem becomes even more compli-



1252

(-457+45°)g (-457+45°) 5

I~ r=3,2z-h/2 . —-Present
I - Present —Rybicki and Hopper
: ao = Rybicki and Hopper 08! 1
e /‘ 1\\

a0 tP \\ Qd‘ty

R i e O
- - - 20 b o Ong/ = B5°

t olo 9 180° 04 o
f _2m]w #a D 2150,
t BT B-S B+S
¢
<€ FIGURE 12 FIGURE 13

FIGURE 11
cated in the case of the more realistic situation of a pin-loaded fastener hole in
a composite laminate. This problem is being currently investigated and the results
will be reported.

Closure:

The development of special hybrid "crack" and "hole" elements for fracture analysis
of multilayer angle-ply laminates with cracks and holes has been reported. The
relative efficiency and accuracy of these new methods have been demonstrated in
carefully chosen test cases of 4-ply (#45°)s laminates.
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