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ABSTRACT

The flexural response of alaminated plate with a through-the-thickness crack was
considered in this investigation. A Tlaminated plate theory of the Reissner
type has been developed to treat this problem. For demonstration purposes,
the theory was applied to a balanced symmetric 1aminate which contains a through-
the-thickness central crack. The stress intensity factor for the crack was
determined and the influences of the various material and geometric parameters
on the stress intensity factor are identified.
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INTRODUCTION

The response of laminated plates to bending action is considered inthis inves-

tigation. This is an important problem area in composite material mechanics since
the Taminated plate is one of the most widely used structural elements. However,
the analysis of laminated plates presents difficulties because of the added length
dimension - namely, the plate thickness. Exact three-dimensional solution to the
problem is very complicated, if at all possible. The approximate approach, then,
is to assume stress or strain dependence on the thickness coordinate and reduce
the problem to a two-dimensional one by considering the stress resultants.

The classical plate theory for isotropic elastic plates was developed by Kirchhoff
[1]. The effect of transverse shear deformation was neglected and, consequently,

only two out of three of thetraction-free condition on a free surface canbe sat-
isfied. Thisdeficiency was corrected by Reissner [2]. The extension of Reissner's
theory to include material anisotropy was accomplished by Calcote [31, Smith [4],
Reissner and Stavsky [5], Dong, et. al. [6], Whitney [7] and Pagano [8], among

others. In the field of fracture mechanics, the bending of isotropic plates
containing a through-the-thickness crack was treated by Hartranft and Sih [9]
and Knowles and Wang [10] in the context of the Reissner theory. An improvement
over the Reissner theory which relaxes the 1inear dependence of the stresses
in the thickness coordinate was made by Hartranft and Sih [117. A laminated
theory along this line was developed by Sih, Badaliance and Chen [12]. However,
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the theory presented in [12] is very complicated and presents difficulties when
extension to orthotropic laminates is attempted.

In this study, a simple laminated plate theory of the Reissner type is developed
todeal with crack problems. The basic approach is to assume that the strains
are continuous across the material interfaces. Consequently, the stresses are
necessarily discontinuous by virtue of the distinct constitutive relationships
from lamina to Tamina. The theory is demonstrated through a specific example
of a balanced symmetric laminate with a through-the-thickness crack. Fracture
mechanics parameters are determined and the influences of various material and
geometric properties on these parameters are discussed.

FORMULATION OF THE PROBLEM

Consider the laminated plate in Figure 1. The plate consists of four layers
each of which is assumed to be isotropic and homogeneous. The two middle layers
are made of the same material whose shear modulus of elasticity and Poisson's
ratio are denoted as M1 and Yy, respectively. The two outer layers are of
another material whose material properties are characterized by Mo and V5.
A1l four layers are of the same thickness h/4 such that the laminate is of
thickness h. A through-the-thickness central crack of length 2a exists in the
plate. The in-plane dimensions of the plate are assumed tobelarge in comparison
to both h and a such that boundary effects may be neglected. A set of Cartesian

coordinates x, y and z are attached to the center of the plate as shown in
Figure 1.
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Fig. 1. A symmetrically layered plate
with a through crack.

1255

The approximationhere isto treat theplateasa nonhomogeneous one whose properties
are functions of the thickness coordinate z. Then, the derivation procedure
for dynamic plate theory by Mindlin [13] will be followed. Although only a time-
independent example will be worked out here, the general elastodynamic equation
will be derived for completeness.

Let the properties of the laminated plate be

y(,u.,\h,f.) o<IZI<;',‘,— (M
(/‘t) v, Y=
h h
(M; v 0 F<lz|< 2 (2)
in which the symbol ¢ denotes the mass density of the material. Further, it

is assumed that the faces of the plate are free from tangential tractions but
under normal pressure a7 and gp, that is,

T = Tyz =0 z=t2 (3)

8, = =9, 5,9 z=2 (4)
sl

6, = -9, 0y, t) 1=-2 (5)

The bending and twisting moments and transverse sheari ng forces, all per unit
length, are defined by

hlz
(MxyMY!er)= -j;l (Gx’ Gy’ Tx/)ZJz (6)
~h/z
h
(G‘anr):_/x (txz,t)'z)dl L
h/y

Making use of the Hooke's law relating stresses to strains, equations (6) and
(7) render

szpu[(llx),"\’lLl‘yL] +D;[(D‘);+91(Py);] (8)
Fllrz-l)l[(BYX“VI(H\()|]+ Dl[( 'DY)1+"‘(BK)1] (9)
2HX7=(\‘:vl)D|(Px\/>'+((~vL)Dz(Exy); (10)

2 & =K [u (1), + Ma (L), ] o
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where the strain resultants are

s w
; By =T hpe Ly 52/ (23)
%
3r o7 =
AN ARNE NN EXTA (€x, €y, Xyy)2d2 13
W[5, a xyh ] j_h/;,, xh'/ ety ) (13) in which the contractions
; L), (B T= 96 [, (™
W[5, (B, (By),]= 96 [/u/ +[m Jeé €5, 2d2 (10
O )D:D|+\‘D1 (?4)
pelad (807 = 2 P
A R ']'Tf (T, ) dz (15)
-"24 :./’ Vo = (DYt Dy /p (25)
(T 1] 22 e 2
[(Lxe)., (lyz);] h[_j;/! + };/4 ](T)m, ¥ye) dz (16)
Po= Lt oy o
and the flexure rigidities are have been used. Note that equations (19) - (23) are similar to those derived
in [13] except the material constants D, < and M are replaced by D, )
;,‘ . and  gA,, respectively. g g
- _ TMh a7
J"-Zé:—l—ju‘) . D, = I&l-\;:) Making use of the elastod

ynamic equations of motion and equations (6), (7),
(18) and after some manipulation yield
In equation (11) and (12), the term k2 is igserted to account fo

E the thickness-
shear motion of the plate. The value for K

was found to be 475/12 in [13].

Let the displacements be continuous through the interfaces by assuming

My JHxy o 3 3%V
—— 0 g ), AL = ey
. Sy O S e (27)

Uz 2V (5,7, 8) vy = ”"y(x, HL), WEWyt) (18)

I Hxy oMy Qo v at%
T e (28)
Substituting equations (18) into equation (13) - (16) and making use of the
strain-displacement relationship for anelastic body yield the expressions relating Q ®
the strain resultants and the potential function <,, Yy and w. Inserting 2&x e Y +19.= g = Phﬂ
these expressions into equations (8) - (12) renders X 2y =L ' 2t (29)
I ¥ where
Mx=Do[3‘f+wj{f] (19) G it g | B = Sy
By substituting equations (19) - (23) into equations (27) - (29), the differential
J‘Py SV equations governing the function ¥x» Y’y and w are obtained as
= —_ v, Lx 20
Myi= Del5s 953 ] (20)

Dolo e tcoevey F (5E+ T5]- T, 028

= fo 3 5%y,

¢ h 52 (30)

Do[t-v) ¥, + (1t 9,)%(%‘% I aa_\g'})] ‘%?1\/40 LW,+;~‘7’,’)
- (Jo 3 ‘a‘V‘

T 5H (31)
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in which <72 15 the L§p1aci9n operator in two-dimension, i. e.
e’ = 2%/ 3 x°+ a3y,

BENDING OF A LAMINATED PLATE BY A
STATICALLY APPLIED MOMENT

Consider for the moment that the plate in Figure 1 is initially at rest qnd
that a constant moment M, = My s slowly applied to the plate §uch that it

may be considered as time-independent. It is desired to determine the response
of the plate under this loading condition.

Under these considerations, equations (30) - (32) reduce to

B —K* @y = = Do 33 (VW) (33)
&y -K g"@y = -, aiy (VW) (34)
By, 28y _ (35)
% Ty - b

in which k2 = Dy (1 - 0)/[%K2h/~01. In_the ;imit for an isotropic plate,
M = M V1 = ¥ and k© reduces to h2/ v “. This is about the same
va}ue as %2/10 ohtaineg in [9]. Fquations(33) - (35) are to he solved under
the following boundary and symmetry conditione :

HX)( (x,0) = &)’ (X% 0) = 0 0< x < (36)
I"\ylx,o) =-M, %, o (37)
Yy o) =0 X za  (38)
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Taking the Fourier cosine transform on Equations (39) - (41) and enforcing the
boundary conditions (36) - (38) render the following pair of dual integral

equations for the solution of the unknown constant SOy
o
]o Asy cos (sxyds = o X2 a (39)
o
L SHOAS) s s0ds =-TMe y< o (40)
(o]

2 (1+ V)

where

3+9o*4KxSl(l-m) I
RO Ry AL bR ),

T , M= O+

Fisy= Bn

The solution to equation (39) and (40) has been obtained by a modified procedure
of Copson's methods [14] as

z ’ e
Asy = - THoo fo NEL 23)7, (sag)dg (42)

2 (e Vo)

Where Jo is zero order Bessel function of the first kind and the function
§(§) is governed by a Fredholm integral equation of the second kind:

3 + );'L(i,'p T dq = 3 (43)

The kernel L(%,1) is defined as
TR T e O L

This completes the solution to the problems. The task now is to determine the
moment distribution near the crack.

Following the same procedure as [97, the crack tip moment distribution is found
as

= K
Mx Lr,g) -\[—:_’F Cosze (l— S'N-gSlns?’ )4. O(ro) (45)
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