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ABSTRACT

One of the most rapidly developing areas in the fracture field since the last
International Fracture Conference concerns the stability and eventual instability
of cracks propagating in ductile materials. The stability of a crack growing
under plane strain conditions, has been described in terms of the material's J
integral - crack growth (Ac) resistance curve. By comparing these with the
system's J-Ac curve for various initial crack sizes and for different loading
patterns, it is then possible to assess whether a crack grows stably or unstably,
and also when a stably growing crack eventually becomes unstable.

Such a description of stable crack growth is essentially macroscopic, and the
present paper focuses on the fracture processes which operate in a process zone

in the immediate vicinity of a crack tip, and how this localized behaviour
correlates with the macroscopic description. The link between the two scales of
description is made via Cottrell's dislocation description of cumulative and non-
cumulative fracture processes and Wnuk's use of the Dugdale-Bilby-Cottrell-Swinden
(DBCS) model.

The main conclusion arising from the investigation is the clear demonstration that
crack growth behaviour is very sensitive to the nature of the localized fracture
processes, even In situations where there is extensive plastic deformation.
Furthermore, the paper provides a framework for a discussion of the effect of
microstructural factors on crack stability, for example the localization of
deformation within flow bands, a process that has been observed in many high
strength materials, and which encourages unstable crack growth.
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INTRODUCTION

When a perfectly elastic solid deforms under plane strain Mode I conditions, the
crack extension condition is J = 2y where y is the free surface energy, and the J
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requi?e the injection of extra dislocations into the material, and the same dis-
locatlon.group is responsible for fracture at all stages of crack propagation. A
"cumulative" situation exists, with crack propagation not requiring an increase in

integral is related to the crack tip stress intensification K via the relation
EJ = K%(1-v2) where E is the Young's modulus and v is the Poisson's ratio. The
crack stability-instability condition is then derived by determining J in terms

I the crack tip stress intensification; fracture is therefore unstable for
: e ! man,

gf thi CPECk length ¢ and the applied loads or displacements. The characteriza practical loading systems. The clas;ic example of a cumulative fracture is ciack

ion has been extended to crack prgpagatlon in thin metal sheets (plane stress propagation in a perfectly elastic solid; in thi the | climbi :
deformation) for small scale ylelqlng conditions. The ensuing crack growth locations represent the progressive loss’of i h s the = 1mb1ng e@ge b o
analyses are based on the assumption that for each material there is a unique approached = SR ehie L et cls e s
relation between J and the crack growth increment Ac. By calculating J as a ’
function of crack length c for various applied loads or displacements, assuming st

: L The Cottrell description focuses on the fracture i
A . s processes at the crack ti and

that tiehmgte?liltis perfe§tl¥ elastic, th? resulting relations for the system by associating these processes with dislocation emission into the surround?é
are matched wit e material's J-Ac relation. This enables the applied load (or | unfractured material, this description provides a basis for relatin materia%
displacement) to be determined as a function of the crack growth increment for a behaviour within the fracture process zone with the response of thegsurro ndin
prescribed initial crack size, thereby allowing the crack instability condition material; it is against this back A that oh s g
to be readily obtained; this approach is frequently referred to as the R-curve B tion B Sl e
procedure. A i
More recently, it has been recognized that crack growth can also occur under plane

strain conditions and be accompanied by either localized or extensive plastic ggﬁgcgggEggéogAggggggg MATERLAL BEHAVIOUR WITHIN THE FRACTURE PROCESS
deformation, a good example of the latter being when ferritic steels are tested L0 | RE S0k LELLONOF TERLCKCHCROWIH

in the upper-shelf temperature region. The R-curve approach has therefore been s e "

: ’ ’ v 7 As indicated i i i :
extended to §ncompass both these situations, the appropriate macroscopic material (a) there is ;2 e$§3i?;iogﬁczi:TSCSiFtPeli <lgii) ;onsldered e extreme.cases.
fracture resistance parameter being J_, the value of the J-integral as a function di A : T e i e 1?to o

j R surroun ing material and (b) dislocations are emitted such that the associated
of crack extension Ac. J is determined in terms of the crack length and applied plastic displacement is equivalent to the crack growth increment. There is, of
loadings, no account being taken of the fracture process, and the ensuing course, no reason why intermediate situations should not exist. Consider, there-
relations are matched against the material's Jp curve, which is assumed to be fore, the case where a fracture process zone exists at a crack tip, and there is a
unique, i.e. independent of geometrical parameters and the extent of yielding. To i gagziil ioij o i;he§1§n within this zone; the zone size is A which represents the
. . . e i i i i 1
allow the problem to become non-dimensional, Paris and co-workers (1977) have iis co%esioneenAs ih;nc§22%eiigt;§ie;higriZidpzsgizi;iiz for.ih? materlaldliiligth
: e 3 3 i : . it is suppose a e
gropofe?Eigz;gitjzil;;ytizl;:z;;?a??:eﬁ ugzivzhew22§za§lizdt%2ad1222 s deat L fracture processes within the zone require the surrounding’material is plastically
MAT = R R > Y K deform; Fhis deformation can be represented by the emission of dislocations into
TAPP = (E/YZ)dJAPP/dC for the system exceeds TMAT’ which is referred to as the i the material. To facilitate the analysis, it will be assumed that these disloca-

. : e sl 5 g { tions hich i 9 . Y ;
tearing modulus, instability should coincide with the onset of crack growth, whlch ] which’chmg agzgguzieacgiiitliai;sPliiemgntdsi aggl;mltted as edgg dislocations
should occur when the system's J value exceeds the material's critical J. value. i (b ; 12 : € Dugdale-Bilby—Cottrell-Swinden (DBCS) model

Ic [ ugdale, 1960; Bilby, Cottrell and Swinden, 1963) can then be used to describe
Implicit in the use of this approach is the assumption that the material's J versus | crack growth. Thus, as the crack tip moves forward a distance A, the difference
Ac curve is indeed unique. This curve clearly depends on the operative fracture ! between the displacements at B, and A, (Fig. 1) is 6.
processes within a process zone in the immediate vicinity of the crack tip. Thus i
there is a correlation between the macroscopic description of crack growth (i.e.
the JR-Ac curve) and the operative fracture mechanisms. ]
This paper focuses on this correlation via Cottrell's (1965) description of the | E;l F;l

fracture events at a crack tip. He highlighted two extreme mechanisms by which !
a crack can propagate in a solid subject to Mode I plane strain deformation §
conditions. At one extreme, crack extension can be represented by the injection |

T e o ()

—
of edge dislocations into the material from the crack tip along slip lines that ? Fa v
are inclinded at 45° to the temsile axis; each dislocation of Burgers Vector b I ﬂ—m Lb)
contributes an increment b/v 2 to both the opening and extension of the crack. A i
"non-cumulative'" situation exists in that each crack growth increment requires ) E3 A
the injection of extra dislocations; more importantly, these dislocations push a a
the existing dislocations further away from the crack tip, whereupon the plastic
zones spread more rapidly across the section than does the crack. With this
mechanism, the material at the crack tip does not actually fracture, but slides—off

along specific planes and it is this sliding-off which is responsible for a ¢ Fig. 1. DBCS model of crack growth: (a) crack length is c,
limited amount of stable crack growth ("stretch zone" formation). ! (b) crack length is (c + A).
At the other extreme, crack extension can be represented by the climbing of edge i In other words, the tip moves forward a distance A if the displacement § accumula-

dislocations along the crack plane ahead of the crack tip. This process does not | ted while a material point is within a distance A from the tip attains a critical
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value §. This is in fact Wnuk's "final stretch" criterion (Wnuk, 1973) and the
extension of Cottrell's fracture description provides a physical basis for this
criterion.

The simulated yield region ahead of the process zone is assumed to sustain a stress
Y, representative of the material's yield stress, while again to facilitate the
analysis, the cohesive stress within the process zone is also assumed to have the
value Y. For the small scale yielding case where the combined plastic and process
zone size w is small compared with the crack size, superposition of results

(Bilby, Cottrell and Swinden, 1963) for the DBCS model gives the displacement &
within the process zone as

e Txu - X2 o 1+ vi-xu (1)
8(1-v2)Yw 2 1 - /1-yu

where u = A/w and x = r/A, r being the distance measured from the crack tip.
Relation (7) gives the displacements @S and ¢f at the extremeties, x = 1 and x = O,

of the fracture process zone as

TE®
ST - R /s R S A T (2)
8(1L-v2)Yw 2 1 -V1x

TE®
P (3)
8(1-v2)Yw

the crack tip stress intensification K and the J-integral being given by the
relations

K2 TEJ
8Y2w 8(1-v2)Y2w

Wnuk (1978) has recognised that this general description degenerates into two
special cases. With a perfectly elastic material, A = w, and equations (2), (3)
and (4) reduce to

D
o, = 0, o, 8(1-v2)YA
mE
(5)
K2 TEJ S
8Y2A 8(1-v2)Y2p

The crack growth criterion accordingly becomes

8(1-v2)YA
mE

= 48 (6)

the crack tip stress intensification or J integral required for growth being given
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by relations (5) with . = §; i.e. J = Y§. In this case a constant displacement &

£
is maintained at the crack tip during crack propagation.

On the other hand, if the fracture process zone is small compared with the yield
zone (i.e. A << w), relations (2), (3), and (4)) simplify to

mE®
U S T
8(1-v2)Yw 2w A
TE®
S P (7)
8(1-v2)Yw
2
K 3 TEJ = q
8Y2y 8(1-v2)Y2w

The displacement ¢(A,c) at the process zone front when the crack tip is at c, is
given by the first of relations (7), while the displacement ®(o,c+A) at the rear of
the process zone, i.e. at the crack tip, when the crack tip is at (c+A) is given by
the second of relations (7) with w replaced by (w+Sw). Since 6w = (dw/dc) A, the
crack growth condition becomes

du, - L n S exp TES (8)
de 2 bew 4(1-v2)YA

This relation describes how the deformation pattern changes near an advancing crack
tip, in that it shows how the plastic zone size w increases as the crack advances.
Furthermore, the relation shows how this deformation pattern depends on the
fracture processes operative within the process zone; these processes are defined
by the parameters § and A. Relations (5) allow the growth condition to be ex-
pressed in the form

oDl 2
dJ - Y§ 4(1-v4)Y o meEJ (9)
de A 7E 2(1-v2)Y2A

and the J versus Ac relation for crack growth is therefore unique for a particular
material.

The preceding results for crack growth under small scale yielding conditions

(A << w << ¢) are of the same mathematical form as those obtained from some recent
theoretical and numerical calculations by Rice and Sorensen (1978). Their analysis
of the deformation field, consistent with a Prandtl stress distribution at the tip
of an advancing plane strain crack in a plastic-elastic solid, gives the functional
form of the crack tip profile: the crack opening is of the form r fn (const/r)
where r is the distance from the tip. This observation, coupled with data
generated from finite element studies of cracks growing under small-scale yielding
conditions, allows the derivation of a relation characterizing the deformation at
an advancing crack tip. By assuming that a crack extends when a critical opening
is obtained at a small distance from the tip, i.e. by assuming a crack tip opening
angle criterion, Rice and Sorensen obtained a growth condition essentially
equivalent to relation (9). At first sight, it is surprising that there should be
this accord, since the Wnuk criterion is concerned with the situation ahead of the
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crack tip, whereas the Rice-Sorensen criterion is concerned with the situation
behind the crack tip. However it is easily shown that one obtains the same crack
growth condition (relation (9)) with the DBCS model, if the displacement at a
material point coincident with the tip of a crack of length c¢ is assumed to
increase by an amount § as the tip moves forward as distance A. This latter
criterion is infact the DBCS analogue of Rice and Sorensen's criterion; thus the
Wnuk criterion may be regarded as a crack tip opening angle criterion with a
constant angle 6 = §/A being maintained during growth. (It is emphasized that ©
must be defined in terms of a finite ; it cannot be defined whenA = 0),

This paper's considerations have so far been with reference to plane strain crack
growth under small scale yielding conditions. To discuss the situation where crack
growth is associated with extensive plastic deformation, consider the Mode I plane
strain model (Fig. 2) of a crack of length 2c within an infinite solid which is

o

E:E:E:B . f::=i32:22}-—-—~_-'~’ ---—e’:‘:
(Ax ZC ‘EAE

& >
Ao

Fig. 2. DBCS model of a crack of length 2c in an infinite
solid. The applied tensile stress is ¢ and thin plastic
zones extend to the points x = *a. Fracture process zones
are as shown.

subject to an externally applied tensile stress o; the yield zones, which sustain
the yield stress Y, are assumed to extend to the points x = + a. The relative
displacement ¢ across the yield zone at a distance s ahead of the crack tip is

s = BY(L=vZ)c [Qn {g_} N sz a’s L} (10)

s
TE L e 2c L Zec(aZ—?2) ) J

assuming that the DBCS model is valid for the extensive plasticity case.
Remembering that both a and c change during crack growth, application of the Wnuk
crack growth criterion shows that J satisfies the differential equation (Wnuk,
1979; Smith, 1980)

2 . 2D
g _ Y8 _ 4yc(1l-v4) &5 2e(a‘-c%)c (11)
de A mE a2a

with a being given in terms of J by the equation

207 <2
;= aw?) o [a (12)
TE c

Relation (11) is valid, irrespective of the extent of yielding. However, when
crack growth proceeds under small scale yielding conditions, i.e. w = (a-c) >> c,
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relation (11) reduces to (9). At the other extreme, where crack growth proceeds
under‘large—scale yielding conditions, and the plastic zone size w = (a-c) >> c,
relation (11) reduces to

d7 . Y8 4y2(1-v2) 2ec
— = — - —="" 7 n | £ (13)
dc A TE A

simplifying to
ari i igs 4Y2(1-y2) 8c
—_ = = - 2n (14)
de A TE A

for small amounts of crack growth, with c, being the initial crack size. The J

versus Ac'relation will be unique, i.e. independent of the initial crack size,
with equation (1u) integrating to give

g, (Ac) (15)

Ic A

p?ovided tbe second term on the right hand side of relation (14) is small compared
with the first term; JIc is the J value appropriate to the onset of crack growth.

The ratio R of these two terms is

4(1-v2)  (Y/E) " =
m (&/4) A

(16)

an@ 1t %s reasonable to proceed on the basis that the J versus Ac relation is

unique 1f.R ¢ 0.2. The magnitude of R is not particularly sensitive to the

logarithmic term, and with a typical value A = SI = JI /Y v 1071 mm and c¢_ in the
ol ¢ o

rgnge.l—lo cm, R is approximately equal to 10 (Y/E)/(8/A); the J versus Ac rela-
tion is therefore unique provided

(Y/E)/(8/8) ¥ 2 x 1072 (17)

Thus a low yield stress, i.e. low Y/E, and a high crack growth resistance, i.e.
high 8/A, favour uniqueness. For example, with a typical value Y/E = 3 x 10-3 for
& pressure vessel steel, there is uniqueness if the crack tip opening angle §/A
exceeds 0.15. Several experimental results (Marston, 1978) for A 533 B, suggest
that §/4 exceeds this value, and uniqueness is expected with such a material.

The large scale y%elding results (small initial crack size) can be compared with
t?e small-scale yielding results (large initial crack size). For the latter,
since JIC = YSIC ~ YA, the governing equation (9) becomes

o _ ¥s 4Y2(1-v2) TeE
= - n (18)
de A TE 2(1-v2)y
t

for small amounts of crack growth. Thus when condition (17) is satisfied, the
second term is small compared with the fipst term. Thus the overall conclusion is
that the J versus Ac curve is independent of both the initial crack size and the
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extent of yielding, for small amounts of crack growth, provided the yield stress is
sufficiently low and the material's crack growth resistance is sufficiently high;
the appropriate J - Ac relation is

4 ., B (19)
dc A

This linear and unique dependence of J on Ac, irrespective of geometrical
parameters, and for both small scale and large scale yielding situations, forms

the basis of Paris and co-workers (1977) use of the tearing modulus parameter TMAT'

With TMAT defined by TMAT = (E/Y?) dJ/dc, it can be expressed via relation (19) as

TMAT = (E/Y).(8/0), and it follows from relation (17) that the J versus Ac curve

v
MAT 50
values in excess of 100;

should be unique provided T The materials considered by Paris and co-

workers have TMAT

valuable support for the tearing modulus approach with such materials.

the present comments therefore provide

DISCUSSION

The main feature of the preceding considerations is the link developed between the
mechanics of fracture within the immediate crack tip region, and the macroscopic
description of crack growth. The local fracture process controls the magnitude of
the crack tip opening angle 6 = 6/A, which in turn governs a material's macro-
scopic crack growth (J - Ac) curve. Furthermore, each material has its own
characteristic curve, at least for small crack growth increments; thus, for
example, relation (19) is independent of both loading and geometrical parameters,
and the extent of plastic yielding, provided the yield stress is sufficiently low
and the material's crack growth resistance is sufficiently high. Crack growth can
therefore be predicted by determining J for various loadings and crack lengths,
while ignoring the detailed fracture processes, and then matching the results
against the material's J versus Ac curve.

In the light of these comments, metallurgical factors which affect the magnitude
of the parameter §/A should also influence the material's macroscopic fracture
behaviour. For example, if a material is hardened by, for example, the introduc-
tion of a distribution of second phase particles by an appropriate heat-treatment
procedure, or as a result of neutron irradiation in a nuclear reactor, plastic
deformation will tend to be localized within a few slip bands rather than be
homogeneously distributed within the component crystals, (Smith, Cook and Rau,
1977). Such flow localization facilitates the processes by which voids coalesce
ahead of a crack tip, thereby allowing crack growth to proceed more readily, i.e.
§/0 is lowered. In the Paris terminology, this produces a reduction in the
tearing modulus, and should increase the likelihood of occurrence of an unstable
fracture, which is a well-known characteristic of some high strength materials.
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