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ABSTRACT

The stress field at the tip of a growing crack in an elastic-nonlinear viscous ma-
terial is derived, and is combined with a crack growth criterion based on critical
strain. There results an (integral) equation of motion for the crack tip which is

solved numerically to yield the growth rate history. Special attention is paid to

instability effects which arise during crack growth as a consequence of the prop-

erties of the asymptotic near-tip field.
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INTRODUCTION

As a special aspect of the highly complicated processes that accompany and deter-
mine the growth of a macroscopic crack in a creeping material, the stress analysis
of a growing crack is presented, and conclusions are drawn with respect to frac-
ture mechanics and to crack growth behavior. The stress analysis is based on the u-
sual (small strain) compatibility and equilibrium equations of continuum mechanics
and on the material law of an elastic-nonlinear viscous solid. The nonlinear vis-
cous term describes Norton-type, power-law creep. The total strain rate is given
by
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The equivalent stress is defined as Ge=(3oij aij/2) , the primes denote the de-

viatoric part of the stress tensor 0, the dot denotes the total time derivative
at a material point, 6ij is the unit tensor, and the summation convention is ap—

plied. Material parameters are Young's modulus, E, Poisson's ratio, Vv, the creep
exponent, n, and the creep coefficient, B.
We consider two-dimensional problems with plane cracks in plane-strain and plane-

stress tension (Mode I). The crack extends at a constant or varisble rate 4 in the
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positive x-direction. The current crack tip position is denoted by a, with a = o at
the beginning of crack growth. The absolute value of the initial crack length need
not be specified. It is implicitly containedin the load parameters K and C* intro-
duced in the next section. Attached to the moving crack tip is a polar coordinate

system (r,8) with 8 = o lying directly ahead of the crack.

The asymptotic stress and creep strain fields near the tip of a growing crack in
such a material, according to Hui and Riedel (1980), have the form

coovl/(n=1) a ., 1/ {n=1)
_ at cr _ nla(t) ACT
T O‘n[ﬁéﬂ 8,5(8),  E5 =3 {BEr B (2)

for r>o and if n >3. The dimensionless angular functions, Gi., é;g, and the di-

mensionless factor a have been given numerically by Hui and Riedel (1980) for

plane strain and plane stress. The asymptotic fields, eq. (2), are valid for both,
steady-state and unsteady crack growth. They further have the remarkable property
to be independent of the load that is applied to the specimen and of the prior
growth history. Besides material parameters, only the current crack growth rate

appears in the asymptotic fields.

Another surprising feature of the asymptotic field will be addressed in the present
paper: According to eq. (2) the asymptotic creep strain increases the faster the

crack grows since ecrmé1/<n_1>. Therefore crack growth is inherently unstable if
the near-tip field dominates over a length scale which is physically relevant for
the microscopic failure mechanism, and if a eritical strain criterion, or a similar
criterion involving strain besides other quantities, controls crack growth. In the
following section, the characteristic lengths for the near—tip field to dominate
are derived for the cases where the near-tip field is embedded in a predominantly
elastic far field or in an extensively creeping specimen. Finally the stress fields
are combined with a critical strain criterion. This leads to an equation of motion
for the crack tip from which the particular effects of the singular field, eq. (2),

on crack growth behavior are derived.

DERIVATION OF THE STRESS FIELDS

Small-scale yielding. First we consider the case where the crack grows while the
bulk of the specimen still behaves predominantly elastic except in a small zone
near the crack tip where the singular field, eq. (2), dominates the stress (short-
time behavior or 'small-scale yielding'; Riedel and Rice, 1980). Within the region
where the stress intensity factor K dominates the linear elastic stress field, the
development of stress and strain can then be analyzed as if the crack were of semi-
infinite length, and the stress can be calculated subject to the remote boundary
condition of asymptotic approach to the elastic singular field,

G.. = Kf,.(8)/verr (3)
1] by

for r >®, where fij(e) describes the well-known angular distribution of stress

around the crack in linear elasticity.

In the present paper, only steady-state solutions to this boundary layer problem
are sought. Here steady-state means constant growth rate or, less stringently, that
the stress field as seen from the moving crack tip varies slowly enough in time so
that total time rates can be approximated by ¢ = - 490/3x. This implies that K and-
4 must vary slowly enough. For the steady-state problem so defined, the general
form of the stress field has been derived by Hui and Riedel (1980) employing dimen-
sional considerations. There results
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where r, represents the characteristic length over which the near-tip stress field,
eq. (2), dominates; r, must be small enough compared to the crack length and liga-

ment Width.to ensure the validity of the small-scale yielding solution, eq. (L).
The dimensionless shape functionszij are not yet known for Mode I. In the following

theor?tical development, the interpolation formula between the known near-tip and
far-field solutions

[Ze(R,o)]1“n N (un 66)1—n R+ fe1—n (2ﬂR)(n—1)/2 (6)

is employed for ?he equivalent stress ahead of the crack tip, which, if applied to
Mode III, approximates the finite element results of Hui (1980) for Mode III within
10 per cent. The detailed form of Zij between the asymptotic limits is irrelevant

for the general conclusions of the present paper; fe and 8 are the angular parts
e

at 6= o, of the equivalent elastic and near-tip stress, respectively.

The steady-state stress field, eq. (4), is approximately valid if the variations of
K and & are sufficiently small compared to K and & themselves while the crack trav-
erses the zone, T where the near-tip field dominates. For continuous velocity or

load variations this leads to the requirements

e et 2Y(n=3) o 1/(n-3)
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Cra?k growth accompanied by extensive creep of the whole specimen. If the test du-
ration is long enough so that the whole specimen creeps extensively, elastic
straining can be neglected except in the zone where the singular field of the

growing crack, eq. (2), dominates. If the size of this zone, Ty is small enough
compared to the crack length and uncracked ligament width, the bulk of the speci-

men can be considered as nonlinear viscous. Thenthe C¥-integral introduced by
Landes and Begley (1976) is path-independent in the bulk of the specimen except in

the near-tip zone, and the associated HRR-field (named after Hutchinson, 1968, and
Rice and Rosengren, 1968)

Oij(e) (8)

ol 1/(n+1)
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sets the remote boundary conditions (r+>«) for the near-tip zone. The dimensionless
factor I and angular functions ai.(e) are given numerically by Hutchinson (1968),
and Rice and Rosengren (1968).

As in the small-scale yielding case the general form of the steady-state stress
field follows from dimensional considerations to be

% 1/2
o, .(r,8) = ()

3 5 Zij(R’e) (9)
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Here, r, is the characteristic length over which the near-tip singular field do-

minetes. It must be small compared to the crack length if the boundary layer
formulation, eq. (8), is to work properly. The dimensionless shape functions Zi.

are unknown as yet, but the asymptotic behavior for R*o and R+« is known, and a
reasonable interpolation ahead of the crack is expected to be

n-1 (1-n)/(n+1) ~ n-1 ~1 n-1
= 5 N
(2 (R,0)] (IR) g, R (unc?e) (11)
The steady-state stress field, eq. (9), is approximately valid if & and C¥ vary to
a small extent only while the crack grows through the near-tip zone whose size is
r,. For continous variations this implies
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THE CRACK GROWTH RATE AS A FUNCTION OF THE LOAD AND OF THE
PRIOR CRACK GROWTH HISTORY

The crack growth rate-vs.-crack length relations presented in the sequel are based
on a critical strain criterion, i.e., the crack is to grow in such a manner that
the creep strain has a critical value €a at a distance X, ahead of the propagating

crack tip. In order to demonstrate the effect of the near-tip singular field,

eq. (2), on crack growth behavior, it is convenient to write the critical strain
criterion in the differentiated form

n X cr X
l ©

=
== & % B - (13)
5

where 0 and aecr/ax are understood at the distance x, ahead of the current crack
tip, and where the material law ¢ = Bo" has been inserted. The ratio xc/ec has

been included for later convenience. The creep strain, ecr’ consists of a part, €
which is accumulated while the crack is still at rest, and of a contribution due
to the growing crack. For small-scale yielding it suffices for the present purpose
to approximate the creep strain of the stationary crack by the creep strain that
would develop in a purely elastic stress field, i.e., eofxr'n 25 Correspondingly

-n/(n+1)

is in the extensive creep limit e jET . The creep strain added to cl during

the growth period is given by an integral over all prior crack tip positions, viz.
an
Q{O (a+xc—a')/é(a')da'. Now, as an important approximation, the stress is expressed

in this integral and in eq. (13) by the steady-state stress field described in
eqs. (4 to 6) or egs. (9-11). With the (interpolated) steady-state stress field
inserted, eq. (13) is an equation of motion that is ideally suited for a step-wise
numerical solution. Its right-hand-side (rhs) depends only on the prior crack

growth history (via the integration for Ecr), whereas the steady-state stress on
the left-hand-side (1lhs) depends on the current growth rate only. Thus, at each
crack tip position, calculate the rhs by integration over the prior history, and
then solve eq. (13) for a numerically. With this new &, the integration on the
rhs can be carried out one step further, the next & can be calculated and so on.
Figure 1 illustrates a peculiarity involved in the solution of eq. (13) for & at
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each step. It shows the lhs of eq. (13) with the steady-state stress fields in-
serted. As a function of the normalized growth rate A, the lhs must exnibit a max-
imum for small-scale yielding, and a minimum in the extensive creep limit, whereas
the rhs, being a function of the prior history only, is independent of the current
growth rate (horizontal lines). It is cbvious that eg. (13) either has two solu-
tions at a given crack tip position or it has none, depending on the load parameter
(K or C*) and on the rhs. The results in Figs. 1 and 2 are universal for all model

parameters not specified in the figures if the following normalizations are em-
ployed; for small-scale yielding:

ae Vorx_|® Kf (o 8 )n—1
il == e c ¥ ffie e
E] 3
BXc Kfe _ /2ﬂxc Ee,

and in the extensive creep limit:
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Fig. 1. Craphical representation of lhs and rhs of eq. (13), vs. normalized

velocity A, for n = b. a) Small-scale vielding, with k = normalized
strgss 1nEepslty factor. b) Extensive creep limit, with ¢¥* = nor-
malized C*-integral. The circles indicate stable solutions.

In the small-scale yielding limit, two solutions to eq. (13)
stress intensity factor (at a = o) satisfies the inequality

n/(n-1)
¢2nxc Esc

exist if the initial

nn
K>§ n-1 G
(n-1) (a8 )" ' £
n e e
Ig the dimensionless notation of Fig. 1 this means k = 4.23 if n = 4. The solution
with the lower & is not physically meaningful since it is unstable in the sense

that the strain at X, would increase for increasing 4. As a consequence, the crack

would further accelerate until it reaches the solution with the greater a which is
stable. Figure 2a shows results of the step-wise solution of eq. (13) for small-
scale yielding. If the stress intensity factor is kept constant the growth rate
increases until it reaches a steady state which has already been considered by

Hui and Riedel (1980). For stress intensity factors that are large compared to the
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Fig. 2. Normalized crack growth rate A vs. crack tip position for 0 = it
a) Small-scale yielding, solutions for constant and decreasing
stress intensity factor. b) Extensive creep limit, solutions
for various constant values of the normalized C¥-integral.

rhs of eq. (14) the steady-state growth rate is & « K'. If the stress intensity
factor is reduced continously, examples of which are also shown 1n F%g. ?a, the
point is reached where eq. (13) has no solution any more. As this point is ap-
proached (marked by an instant drop of the velocity to zero 1in Fig. 2a) the present
theory ceases to be valid since a sudden velocity drop violates the.steady—state
requirements, stated in eq. (7). The present theory would thgn predict that for
zero growth rate, after the velocity drop, the stress according to egs. (L to 6)
would also be zero at x_, and no further straining nor crack growth ?ould tgke
place. In reality, however, the zero steady-state stress figld assoglateé with

4 = o will not be assumed, and straining and crack growth will continue in a non-—
steady-state stress field.

i imi i ion is, i i to the small-
In the extensive creep limit, the situation 1s, 1n a sense, 1Everse &
scale yielding situation. Solutions exist if initially (at a = o) the load para

meter C¥ is small enough to satisfy

2 1/(1-n) n+1 n+1

gheilla = 1 g ome (me) (15)
A )n—1 5 n ( (o

(n+1) o, &, R

and the solution with the smaller & is stable. As it is shown in Fig. 2b, the crack
accelerates under constant—-C* conditions and never reaches a constant growth rate.

. 1/(n+1) . ) 4
Rather, if a critical growth rate Amax = (n-1)/c* / , or, in physical coordi

nates

e 1/ (n1) 21

Oe/In 6 E (BX )2/(n+1)
c

= (n-1) C%(n—1>/(n+1) (16}

i i i d crack growth becomes un-—
] ceeded, no solutions to eq. (13) exist any more, and cr ’
;iagie. This is because the near—tip field gains an increasing influence on the

strain at ¥ as &, and thereby Tos increase. It has already been remarked inthe in—
¢

troduction that the near-tip field inherently tends to cause @nstabilities. Near
the instability, large crack acceleration occurs, which invalidates the present the-
ory .
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Kubo and co-workers (1979) have also studied crack growth under the condition of
extensive creep, however, ignoring the near-tip field, eq. (2). Their results cor—
respond to the low-C¥ limit of the extensive creep case of the present study. In
this limiting case, also analytical solutions of the integral eq. (13) are possible
based in the Laplace transformation method (unpublished results of Riedel and Hui,

1978) .

DISCUSSION

The results shown in Fig. 2 have been derived using steady-state stress fields and
a crack growth criterion based on critical strain. The assumption of the steady-
state stress fields is seriously violated at the onset of crack growth, where the
velocity changes abruptly. Here for a certain period of time the stress field of
the stationary crack rather than the steady-state field of the growing crack per-
sists to dominate at x,. The field of a stationary crack leads to an initial ve-
locity of A = 2/n (=.5 in Fig. 2a) for small-scale yielding and A = (n+1)/n (=1.25
in Fig. 2b) in the extensive creep case. The deviations from these numbers in

Fig. 2 illustrate the error which arises from the employment of steady-state
stresses despite of the velocity jump at a = o. The smooth velocity variations
later on in the growth history admit the employment of steady-state stresses, and
the present theory is a good approximation in this respect.

The critical creep strain criterion for crack growth may be too simple in many
cases. However, the instability effects due to the near-tip field are not princi-
pally removed if the diffusional mechanism of microvoid growth is included in the
local failure criterion in addition to the creep strain mechanism. This conclusion
may have to be changed if corrosion plays a major role for crack growth.

For larger amounts of crack growth (crack growth comparable to the initial crack
length or ligament width), differently shaped specimens can no longer be unified
in terms of K or C¥ as in the preceding sections, and the crack growth history
will depend on the detailed specimen geometry.

CONCLUSIONS

1) The near-tip asymptotic field at a crack growing in an elastic-nonlinear viscous
material, with a stress exponent n >3, can have striking effects on crack growth
behavior. Crack growth that is accompanied by extensive creep of the whole speci-
men is unstable if the growth rate exceeds a critical value. Under small-scale
yielding conditions crack growth at low growth rates occurs in a non-steady,
possibly intermittent way which is not a cosequence of a possible inhomogeneity of
the material. Inserting typical numbers from the experimental literature for the
material parameters in eqs. (14 to 16) indicates that the instability effects due
to the near-tip field might occur within the practical range of &-, K-, and C¥-
values in which fracture mechanics tests can be done.

2) Whether or not the near-tip singular field is important, the crack growth rate
is history-dependent even for a time-independent load parameter, K or (Fs
In the examples considered in Fig. 2, the history dependence is less pronounced in

small-scale yielding than it is under conditions of extensive creep of the whole
specimen.

3) One can expect crack growth to be dominated by K or C¥only if the respective
lengths, ryorr,, as well as the amount of crack growth are small enough compared

to the crack length and ligament width. This condition for K or C¥-controlled crack
growth must be fullfilled in addition to, and is independent of, the conditions
derived for stationary cracks by Riedel and Rice (1980).
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