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ABSTRACT

A simple model is proposed to analyse the dynamic steady state propagation of a
damaged zone in elastic and plastic solids. Exact solutions are worked out for the
small scale damage model in elastic material and for the strip problem, in mode
IIT loading. The small scale model of mode I is numerically solved with the finite
element method. Mathematically, one has an unknown-boundary value problem, the
solution of which provides the shape of the damaged zone. The influence of para-
meters such as applied loads, fracture stress, and velocity is studied in connec-
tion with the J-integral in elastodynamics. The relationship with the classical
theory of cracks is established. The implications for ductile fracture are discus~-
sed using the model of damage in elastic perfectly plastic material. The new re-
sult G > 0 is obtained for plastic damage models which imply a characteristic di-—
mension related to the material constants, the applied loads and the velocity.
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1. INTRODUCTION

Crack problems are extensively studied in the fracture mechanics. A crack in solid
is geometrically idealized by a smooth surface of discontinuity. The crack front,
or the crack-tip in 2-D problems, is necessarily a singularity line (or point) of
the mechanical fields. The nature of such singularities depends on the physical
laws of the material. Generally, it is assumed that the same mechanical behaviour,
elastic or plastic etc..., applies to both continuum and crack tip region. The
homogeneity assumption requires that the process zone at the tip is small compared
to the crack length. Crack theories do not take into account the process zone,
because at the scale of some grains, geometrical and physical idealizations of the
crack are not adequate. The material is indeed damaged and so the continuum concept
may be questioned. As far as the continuum approach is a reasonable assumption,
any analyses of the process zone by continuous models should be very helpful in
fracture mechanics.

There are continuous models of internal damage parameters, which can be incorpora-
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ted into crack analysis. For instance, damage parameters have been related to the
effective stress, Kachanov (1958), Lemaitre and Chaboche (1978), Westlund (1979),
etc..., to specific mass density, Rousselier (1977, 1978), and recently to micro-
cracks density, Dragon and Mroz (1979). To our knowledge, the most elaborated
models of damage are these of Dragon and Mroz, and Rousselier, who have introduced
the thermodynamical state parameters such as strain €, plastic strain €p, internal
parameters associated with the hardening and the softening processes. Damage models
have been especially developed for fatigue, creep, ductile fracture, etc..., see
Dang Van and Cordier (1980), Kachanov (1978), Kubo and al. (1979).

In this paper, we make use of a rather elementary model of damage in order to fo-
cus our attention on the problem of fracture by dynamic propagation of a damaged
zone.

Analytical solution will be worked out for dynamic mode III. It will be shown that
the model of "small scale damage' in linear elastic solid is identical to the
classical linear fracture model, provided certain limit procedure is made. A
"large scale damage' model will be illustrated by the problem of an infinite strip.
Approximate analysis of the quasi-static growth damage in mode I will be also
given.

Mathematically, the analysis of fracture by damage propagation is an unknown-boun-
dary value problem, which has some similar feature with cavitation in fluids dyna-
mics. Moreover, the problem is non-linear. The aim of this paper is to determine
how far the damaged zone may be influenced by different parameters such as loading
conditions, fracture stress, velocity V of the damage front.

Energy considerations will be done in connection with a path-independent integral
given for moving cracks in elasto-dynamics by Bui (1977, 1978). The extension of
the theory to ductile fracture will also be discussed.

2. A SIMPLE !MODEL OF DAMAGE

2.1 Qualitative considerations

In most polycrystalline metals under simple loading, the quasi-static stress—strain
curve has schematically the shape presented on Fig. l-a, with three characteristic
. elastic (E), plastic (P), and failure range (F). The last range after
reaching the fracture stress O, or the limit strain €_ is characterized by the de-—
crease of the stress which mabee explained by various factors, geometrical insta-
bilities, such as necking, narrow slip bands through the sample, and structural
instabilities occurring at two different levels. Firstly, on a microscopic level,
there are nucleation of voids, cleavage, intense shear bands between voids

(Grant 1971, etc...). Secondly, on a macroscopic scale, there are cavities and
microcracks.

ranges
ranges

The plastic range depends on the materials and the loading condition. The effect

of a very high strain rate is to sharpen the stress—-strain curve (dotted line of
fig. 1-a).

Let us consider some qualitative aspects on micro-mechanisms of plasticity and
damage. Plastic strain is known to be the result of dislocations glides, twinning,
etc... The effect of increasing strain rate is to increase both density of defects,
dislocation loops and cells, and inertial effects, which constrain the motions of
dislocations. These mechanisms are responsible for the workhardening of metals.
Plasticity by slip is generally independent of the hydrostatic stress. Experimental
results on steel, see survey of works given in Bement & al. (1971), show a sudden
increase of the dynamic yield stress at ¢ = 104 5”1, at room temperature, more

than 2 to 3 times the static value. In fact, below the transition temperature,
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time effects and diffusion processes are often not very important to have influ-
ence on the work-hardening process. At high stress levels, and elevated densities
of line defects, there are new mechanisms, such as relaxation of dislocations at
microcracks along the boundary of grains, annihilation of dislocations between
themselves, voids nucleation by jog mechanism, etc... These softening mechanisms
are associated with an overall volumic dilatation, so that damage and fracture

are expected to depend on hydrostatic pressure, Frangois (1977), Auger & al.
(1977). The effect of increasing strain rate is to reduce the ductility of metals,
not the damage process and so the stress-strain curve has a sharp form. It is
expected that such a stress-strain curve prevails in the process zone of the run-
ning crack, even at low speed. For instance, a small strain variation A€ = 102
over a grain size distance Ax ~ 1073 m results in a strain rate of order € ~103 v,
i.e. 10% s7! for vV = 10 ms~!. This very qualitative discussion indicates that dyna
mic behaviour must be considered in the process zone. Unfortunately, we have only
a few experimental data during very large strain rate, € »10° s~} or higher value.

2.2 A model of damage
We first idealize a sharp O(E) curve by the model of Tig. 1 (b), which is consi=
dered in many works, see Dragon and Mroz (1979), Rousselier (1978). We assume

that the material is elastic below some fracture stress O

Damage fracture occurs

when some relation is satisfied : i
(1 f(Il’ J2) =0
where I, =04 and Iy = 1/2 sijsij are respectively the invariants of the

stress tensor and the deviatoric stress tensor. At the critical state (1), accor-—
ding to the path-strain, there are two possible states, elastic unloading (path 1)
and sudden damage (path 2). We can interpret the model in the framework of a dama-
ge theory, by putting the Kachanov's parameter D equal to zero for elastic beha-
viour, to one for full samage state. Since the effective stress Oe = g/(1-D) must

be a finite quantity, the value D = | implies 0 = O.
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In section 7, we shall consider a more complex model including plasticity too,
Fig. 1 (c). In what follows, we make use of the elastic—damage model to analyse
the propagation of a damaged zone Z in solid. We assume that the material is da-
maged around the crack tip and along the crack surfaces, Fig. 2 (a). Neither the
physical crack, nor the damaged and discontinuous material in Z may be geometri-
cally, kinematically described.

Let us consider the steady state propagation of the damaged zone Z, parallel to
On, with the velocity V. We assume that the boundary 9Z consists of two straight
lines CB, C'B' which are the stream-lines of particles being elastically unloaded
and the arc BB', i.e. the damage front of the process zone. In the wake region Z,
due to full damage, the stress tensor is null. Hence the stress—tensor is discon-—
tinuous across 0Z, but the continuity of the stress vector T = 0.n implies that
T. = 0 along 9Z. In the moving axes Ox1X2X3, the boundary conditions for the

stress-tensor in the undamaged zone { are

o = g =0 =0
(2) { 271 22 23
f(Il,JZ) <0 on BC, B'C'
o] =g =0 = 0
3 { nn nt nz
f(Il’JZ) =0 on BB'.

In a two-dimensional problem, the damage criterion takes a simple form. In mode
III loading, the stress components are J3;, O32. Therefore the condition f < 0
is equivalent to

@ 6% +03. <0,  (@n=0)

In mode I or II, the inequality takes the form :

3 2 _ »
(53 e =0 ’ W on T Sut o
One notices that the first conditions of Eqs. (2) and (3) are the same for notches
problem of Neuber (1961), Rice (1968), Eshelby (1969), etc... The difference is
that the boundary of a notch is a given data, while in the present work, the con-
tour 3Z is an unknown. Mathematically, we have a free-boundary value problem, so
two boundary conditions on 3Z are required. Notice that the second conditions of
Eqs. (2) and (3) are similar to the yield condition in plasticity, i.e. the pro-
blem turns out to be non-linear. There is another difference with notches problem
in conservation laws across dZ. The flux of mass across 92 is conserved, i.e.

oU = OOUO = ‘m{g) (s € 32)

[}
P31
b]
n
\
<
a.
. ¢ a 324§
1 o
c / B o
Damaged zone Z

Fig. 2. (a) Steady-state moving damaged zonme Z with the velocity V.
The damage front is BB'.
(b) Complex T-planme, T = O32/B+1i031.
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where 0 and p_are respectively the specific mass density of Q and Z, U and U
are the normal relative velocities of their material points with res éct to 92°
The flux of mass m(s) vanishes on the stream-lines BE, B'C'. But aloﬁg BB' we‘
Eave m(s) i 0 and, accordi?g to the second principle of thermodynamics we’also
[;regfif]T;.O, where [S] is the jump in specific entropy S . Conseque;tly,

i h.BBvls.means that some energy, from the continuous media  , is dissipated
'oug w¥th non negative rate. The analysis of fracture energy rate through
B? w?ll be discussed in section 7. We remark that the motion of a notch in 4 =
lid violates both Eq.(6) and the second principle. i

3. DYNAMIC PROPAGATION OF A SMALL SCALE DAMAGE ZONE.

3.1 Equations
imgll scgle damage must.be.upderstood i?/ﬁhe mathematical sense that both stress
an s;raln decreas? at infinity as O(r ). Let us recall the basic equation
in mode III. ng displacement w satisfies the wave equation in fixed axes Oxyz :
6) 2 MR Ll BOsE)
Y A s

A 1/ 5
xﬁs;zgca;eéuéi) 1; thehshear :ave speed, Y is the shear modulus. Introduce the

; 1X2X3 for the steady state case, togethe i = =
plex variables of Radok (1958) : ’ ¥ TR e

z = X1 + iBx,

1 .
T Sin@an it sy

I g woton ol 2 A
where f (1 vEilics) , O3p = uw’z , O31= uw’l
The wave equation (6) is equivalent to d7/9z = 0. Hence the problem is readily

solved by finding the analytic functi i
i A %
S bl y on T(z) or z(t) which satisfies appropriate

igngyz.problem, these conditions are the damage criterion Eq.(4), the stress—free
ition on 9Z and the small scale damage assumption taken in the following form:

K
(7) T et Sl IZ[—rm
Bv2mz
The parameter K is similar to the dynamic stress-intensity factor K , while no-

tlng that it is not agsociated with stress singularity. Further disCission is
needed to make clear its actual significance.

3.2 Solution

The analytical solution of i i

cher (1980 a). Let us presei?etﬁzoziTStiSEtig ZZ?Z?IZ?S i el
gimifs1§?esgam?gihcr1terlon (4? satisfied by mapping z into the interior of the
e mzppeg int§ z;plane (Flg. 2 gb)), Wltb semi-axes T,/ and T,. The front

i T e arc bab', whlle.thetllnes BC, B'C' are mappéed into bc, b'c.
v crucial step og the method of solution is to express the stress—free conditi
03101 + O32n; = 0 in complex form. Let us consider the arc bab', in which : 3l

1
= cosf + 1 1 = == e
B [R os 1 R51n9 s ) < 06< 5 - If we denote by ds the arc element on BAB' s

then with the stress—free condition, we obtain dz = (sin® + iBcosB) ds . It is
easy to verify that the stress-free condition is simply :

8 ok Eoiidy
(8) Im { (1 ) s 0 along bab',
where Y2 = (1 - B2)r2/p? t i
Vi that(dT iE )TR/E . Noy, on the’stralght llngs BC, B'C', because of 03, = 0
b : Ls purely imaginary, while dz and (1% - ¥?) are real. Hence, the
racket in (8) is imaginary along bc and b'c' {



538

9) Re {(12 - v?) -‘j—i} =0

The function (1?2 - y2)z'(T) has a pole of order 3 at T = 0, because of Eq.(7), and
a simple zero at T =Y since the function z'(T) is regular in the semi-ellipse.
Let us consider an auxiliary w-plane and the mapping transformation T - w(T) which
maps the interior of the ellipse (T,/B , T_) onto the unit circle |w| < 1. Then,
the solution of Egs. (7), (8), (9), is given by :

C 1 1

—— ] + Il
(1?-vy?)  w(m) w? (1)
where C is the real constant determined by Eq.(7) as

BSErNOIN

T[wz (Y)BZ . . .
Eqs. (10), (11), completely solve the non-linear problem. The mapping function is
explicitly known (Mikhlin, 1957)

2

along bc and b'c'.

(10) 2l ()=

- w2MIw? (1) - w’ ()]

(11) Cc =

. T =
w(t) = T&:TT?; exp ( Q(T) ) (a = 1/B)
Y2k T~4k
k1 R -2k
(12) Qt) = I (=1)" ¢ ———s———— P, (1) (0*])
k=1 k Ku+l)2k+(a—1)2k] %

Py (0 = [+ VIV el -V

PZP(T) are polynomial of degree 2k.

STRIP MODEL

h/h SMALL-SCALE DAMAGE h/H
o Py ~ W
Y
1.5k
.03 2h
Stress—
criterion

uw/HTR=.175

Fig. 4 Variation of the thickness
h/H with the velocity V in
the large scale damage model

Fig. 3 Variation of h with the speed V.
Stress-criterion (Constant K/TR),
. i 2
Energy-criterion (Const.K%BTR).
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An interesting parameter may be the thickness 2h of the damaged zone. Taking one
half of the residue of z'(T) at T = 0, we obtain the result
2h=K2[—w—'£.—)—]—2—{]—u)2('Y)+ 1 & 1 _va(O) }

8 O R G BRI T
Figure 3 shows two plots of h versus V/c, corresponding firstly to constant K/T
(Stress—criterion) and secondly to constant K?/BT2. We remark that h decreases
fromh =K?*/2t2 at V=0 t 1/2h atV=c, only in the latter case. We shall
prove Tater tha§ the case K?/BT2 = cOnstant is closely related to the energy cri-
terion. In the last case, we see that the damage models provide naturally a charac-
teristic dimension, say h . In Fig. 5, we have plotted the damage fronts BB' for

D o} 4 ; : 2 "
several velocities corresponding to energy criterion. They are getting thinner
and thinner with increasing velocity.

(13)

Quasi-static loading.
We have B = 1, w(t) = T/TR

. The solution is very simple :

K? 175 )
14 ' = - < o
L 2/ = - oW
or : 2 5
K K T
2(1) = 57 = 77z log = + Real comstant

R R
We can arbitrarily fix the constant, for example to get XI(B) = 0. Then, the da-
mage front BB' has the shape of a cusped cycloid :

K2 m m
=i -—< Esiid
(15) 2
XZ(G) Sl oe=vr (sin26 + 26)

2 T2

The thickness Zho = KZ/Té decreases to zero when TR + o and the limiting case

x./h

Fig. 5 Damage fronts in the small-scale Fig.
damage model, with energy cri-
terion for several velocities V/c.

6 Damage fronts in the large
scale damage model of the
infinite strip of height 2H.
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h = 0 corresponds exactly to crack problems. The same ?onclusion is élso true for
dynamic loading, Eq. (13), when T, - « (Perfect elastic1ty): The quasi-static
stress O3, along Ox, is plotted 1n Fig. 7, for several ratios R = T /T83 where

T_ is the yield stress. The stress approaches pratically tbe value predicted by
cfack theory (dotted line of Fig.7 ) for R 2 3. For comparison, the cleavage
stress /10 corresponds, in steel, to R = u/lOTO = 10.

Remarks : 1 Y I
Stationary cracks in linear elastic body have been classically obtained ?y various
limiting approaches, such as oblong elliptic shape hole, smooth root radius at

flat notch, small-scale yielding model, (Rice, 1968, NeuberZ 1196115 i) i

Our model h - 0 is different in the sense that the propagation of the front BB
does not mean a removal of material. There is only an irreYersible change of.state,
just like the cavitation in fluids dynamics, in which particles are changed into
bubbles when the critical pressure of vapor is reached.

4, THE INFINITE STRIP.

The method of solution developed above is now applied to the problem of an infinite
strip. Constant displacements + w are applied to the lines x, = + H. Thus, the

stresses at infinity are 632(—_w) =0 and 032 (+ ©) = uw/H. The function z'(T)

has two distinct poles at T = 0 and T = pw/BH = T . Taking intg account the
same conditions (8), (9) and the same mapping function w(T), we find that

C 1 2 2 _ 2
(16) z'(1) = 2;3:?77'[5 + w][ar w (Mllw w” ()]

1 1

[ - w?(t,)]7

x [w? - wi(t )l

Stress ahead the damaged zone

R=1_/T
T/ Ty R'To
4 k-
e
2
1
0 1 2 3 4

2= =2
cr%ﬁgw?odel Xl/(K LI )

Fig. 7. Stress O3, ahead the damage front.
Singularity in the linear fracture
Mechanics (dotted line, R= « ).

In order to determine the real constant C, we consider the width 2H, i.e. the
residue of 2'(t) at T = T, Accordingly we obtain :
Goe JlaE Gt GEOONT L~ (e ya (v

(@179 2H = - Bl ol = w2 @l &)

Finally, we integrate Eq. (16) along the semi-ellipse arc to get the damage front
which is shown in Fig. 6. It is worthwhile to notice that the "large scale' model
gives nearly the same picture as that obtained in the "small scale" model, Fig. 4,
with the energy-criterion. The thickness 2h is determined by one half of the resi-
due of 2' (1) at 7= 0 =
ik b WEN (T2 = YA = 0P (T )] ' (T)

; H YW () - 0" MITT - 0’ (T )w? (e (0)

i : v 9 iy : 1
The quasi-static value is bo = HTi/Té, while the limit value at V = ¢ is h(c)=§ho

>

i.e. the same formula as in section 3. Fig. 4 shows the variation of h/H with
V/c for several ratios ng(w)/TR.

5. QUASI-STATIC MODE I.

We look at a small scale @o?el, in plane strain, in which stress and strain de-
crease at infinity as O(r ). In terms of the complex potentials of Muskheli-
shvili, & , ¥ , it is required that ¢' behaves, at infinity, as follows :
(19) P (2) g

2ITz
The determination of the unknown boundary 3Z is a rather difficult problem because
of non-linearity of equations.

We do not attempt to derive an analytical solution, except the thickness 2h which
can be easily obtained by the J-integral. Just as in the notch problem, the J-

el ==

integral of Rice is reduced to (T. = 0 on BB')
(l—vz)ﬁcé
(20) J = J dez = 3
BR'

where W is the free energy constant along BB', W = (1-v%)o?/2E , with Poisson's
ratio v, Young's modulus E. Now the condition at infinity %19) provides the clas-
sical formula J = (1-v?)K?/E . Hence, the thickness is

2K?

7
R

(2419 2h =

The arguments just developed indicate that the interpretation of (1-v2)K?/E is
the energy-rate dissipated through the damage front BB'. Therefore, from the phy-
sical point of view, we can identify K with the toughness K c of the material,
while noticing that the identity K = KI holds, mathematical}y speaking, only when
g, iy
Eq. (21) shows again a characteristic dimension of the model. It should be noticed
that o < u/10 clea¥7§e stress), therefore h > 100 K2 /u?. For example, for steel,
where RK = 10 m and p =~ 10}INm ¢ we have h > ¥8‘4 m, which means the
thickness is larger than some grains size.

In crack theory, the estimation of the process zone size by various models, pro-
vides generally the same order of magnitude = K]Z:/O2 , etc... See surveys on
elasto-plastic models by Mc Clintock (1971), Rice ?1968). Recently, Rousselier
(1978) has reached a result similar to (21), by numerical simulation of the dama-
ged zone having a strip shaped form.

In this work, we may determine the unknown front BB' by the use of a finite ele-
ment programming, combined with an iterative scheme since two conditions have to
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i1terion = = nd stress—
e ied or B o e on riterion k g /0 1 5 & e
satisfied on B s n th e hand, damage c d t

A= R A
£ condition T. = 0 , on the other hand. The latter condition 1s fulfilled by
ree c

- g Ton
h ropram at eiach step of the calculation. By mgdlfylng the curvatziiigna OI% "
;B? pinireasing n if k < 1 and conversely, we sat%sfy th;lforgerhco: e aéproxima_
; i i ry quickly. Fig. show :
t the iterative scheme converges ve o
izugioiiaand the final mesh used near 9Z. We see that the damage front is mo

blunted than the cycloid shaped front of mode III.

6. A PATH INDEPENDENT INTEGRAL IN ELASTODYNAMICS .
iven

It is well known that Atkinson and Eshelby §1968), énd Freund (197§)h23Z§gg;V26r0

%nce ral for cracks in elastodynamics which requires a contzu; Bt by
and%us iround the crack tip. Another integral has bgen propose yr . pa;h—
Earlcracks in elastodynamics with the use of an arbitrary contourOdei & it
'idependent J-integral for cracks can be extended to the damage m
i
follows

. . "
Lo e - . - pu.u.,.Vnitds + ——~J pu. U,y
Geay [F{Wnl T PHm™m Oijnjul’l Pusuiag dt AT) il

& 5 1 1
our the end points of which are on the stralghtlllnes 3C,CB Cré—

d A(T) is the area bounded by I' and 9Z. The proof of the path 12deizzleHLthus
azrty of Bui (1978) can be extended, word for word, to t@etpresinomeq izz)
e [ the boundary 9Z. The area-integra :
consider now the contour T on the botn PRSI SER
vanishes. Taking into account u. = —Xui,l 5 Oijnj s
1 o e

(23) J = JBB'[wnl + puiuinl]ds

where [' is a cont

damaged zone

Fig. 8. Damage front in mode I by the
use of a finite element method.
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In mode III, Eq. (23) can be written in a more convenient form :

2y

when adding the lines bc and b'c' to the path bb', the value of the J-integral
does not change, since 1%dz is real on bc and b'c'. This allows the calculation
of J by residue technique.In view of Egs. (10), (16), we obtain J = K?/2uB for
the small-scale model, and J = uw?/H for the strip model. These results explain
why the damage fronts presented in Fig. 4 and 5 have nearly the same form, since
they are associated with the conmstant flux of energy into BB'.

(24) Te B gy J 227 (1) dt
bb'

The analysis of the "generalized force" acting on the damaged zone, by means of
Eqs. (22) to (24), is very similar to the result already known for flat notches,
Rice (1968), Eshelby (1969). As pointed out by Eshelby (1969), the weak point of
the "generalized force" theory, when applied to notches, is that the motion of a
notch is meaningless, since the removal of material is quite artificial. Such a
difficulty disappears in a damage theory in which there is only a change of state
of the material behind the front BB'.

Let us notice that in Eq. (23) the density W is constant along BB'. The kinetic
term 1 pl.u, is expected to increase with the velocity V. Therefore, a constant
flux 2 of energy dissipated through BB' implies a decrease of the thickness 2h
with increasing velocity. This point has been confirmed by exact solutions of
mode III. The limiting value h/hO = 1/2 means that the equality

1

= pu,u,dxy= Wdxpholds for the limit velocity V = c. (25)
pptd 1 1A BB'

7. DUCTILE FRACTURE AND DAMAGE.

We have just developed very simple models of damage in order to get some close
form solutions. It would be interesting to have similar analyses for more complex
behaviour, for example elastic-perfectly plastic material. A reasonable assumption
on the damage state would be that it occurs when a finite value of strain €y has
been reached, Fig. l.c. Of course, it is out of question to derive analytical so-
lutions for such a model. Nevertheless, we expect that some general features of
the elastic-damage models, concerning characteristic dimension, finite stress and
strain, etc..., are still valid, while the situation is more complex due to plas-
ticity. These points were confirmed by an explicit elasto-plastic solution recent—
ly obtained by Bui (1980 b) for a stationary damaged zone in the quasi-static

mode III, see Appendix.

In what follows, we derive some general results on energy rates and their associa-
ted integrals for moving damaged zone.

For isothermal loading condition, the energy-release rate VG per unit time is de-
fined by

(26) VG = P -0-K

where Pext is the power of external loads, U = J W(ee)dv is the internal energy,
Q
W(ee) = W(e - gp) is the free energy density and K is the kinetic energy

1 o« o
K = iJquiuidv.

The isothermal loading assumption has been relaxed in recent works of Bui, Ehrla-
cher, Nguyen (1979) who gave the analysis of crack propagation in general mate-
rials by coupled equations between the mechanical fields u, €, 0...and the tempe-
rature field T. The energy release rate in elastic material was interpreted as a
moving heat source. In thermo-elasto dynamics, the temperature singularity
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was found to be logarithmic T = - GVlog(r/d)Y2km. Such a weak singularity does not
change the dominant singularities of the mechanical field.

As already known in crack theory, see also NGUYEN (1980), .
the dissipative rate VG consists of two parts, plastic work rate Dp = J 0.ePdv
Q

and energy rate VG consumed by fracture at the tip, if Q is a cracked body. For
damage models, we can see that the same interpretation holds, VG = Dp + VG, where
G is the fracture energy rate with respect to the damaged zone length.

Let us recall some results already known for "perfect" materials, i.e., the mate-

rials which have some infinite characteristic. For "perfect" elastic body, i.e.

elastic material (ef = 0) having infinite strength (0 = ), one has D_ = 0 and

G = G, so making a distinction between the symbols G 3nd G is superflugus indeed.

The quantities G, G are equivalent to the path-independent J-integral Eq. (22).

A quite different situation appears in "perfect" plasticity, in a double sense

thet ¢ = constant, and that €, = . The material has an infinite ductility. After

Rice (7966), the fracture energy rate consumed at the crack tip is G = 0, see

also Nguyen (1980), and thus the energy release rate equals the plastic work rate

V6 =D .

p

Let us consider the damage models for establishing the balance equation of energy.

The dynamic equation, in integral form over Q(t), is written as follows

7) [ ot av + [ 0.8 o+ [ o.ePav [ rie = ¢
* .o .p 1 Ay . Y Y =

where & = ¢ + ¢P = & (Vu + V'u). Since T, = 0 on 93Z, the integral over 3Q, i.e.

over the outer contoir S of the body is nothing but the power of external loads

P . We introduce the convected differentiation of integrals U, K over time-

dgggndent domain Q(t). Then, assuming linear elasticity g.e° = ﬁ(ee), the Eq.(27)

is re-written as

d 1 o o d - e _ e 1 o o > >
(28) EEJ fpuiuidv + EJ W(e )dv + Dp = R J {we) + ——z—puiui}v.\) ds
Q Q R
- > . > >

where vy = - n 18 the outward normal to 9%, V., =0 on S, V.n = 0 on B'C' and BC,
and V.n = Vn] on BB'. Thus comparing Egs. (28) and (26), we obtain :

(29) VG =D + J {(W(e®) + Sob.4,}Vn, ds

p BB 2711 1

Hence it is proved that VG also consists of two parts, plastic rate D_ and frac-
ture energy rate VG through the front BB'. The rate G with respect toPunit length
is :

(30) G = J e + %p&.&.}n'ds
BB' St T |

We notice the similarity between Eq.(23) and Eq.(30). In fact they are the same
because W(e®) is defined as the elastic strain energy density. In elastic-damage
model the J-integral, Eq.(22) (equivalent to Eq. (30)) is path-independent. In
Eq. (30), the constant critical state 0 =0, along BB' implies that W(e") is

constant along the front too, W(ee) = (1 - vz)Gé/ZE in plane strain mode I.

Let us prove that the thickness is non zero. Suppose h = 0, then, because of

T. = 0 on the lines B'C', BC, we have a crack in the body for which the strain
shiould be infinite at the tip B = B', see Rice (1968) . Thus, the assumption of a
finite value of the strain e_ along BB' implies necessarily h > 0, and consequent-—
1y, from Eq. (30), we get the result G > 0, which is proved to be valid for
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quasi-static as well as for dynamic loading.
In the quasi-static case, the formula for G is :

(31 G =i 6 —-széh /E (Plane strain, mode I)

whe?e ? is one @alf of the damaged zone thickness. We cannot determine the charac-

teristic qlmen51on h by energy considerations because of plasticity. Numerical

analys%s is the only way to know how far h may depend on 0 , €_ and the loadin

condition. The following result is expected : h + 0 when ER,+ % (crack model)%

Qur result G > 0 obtained'in damage theory differs fundamentally from that of Rice

;Ztézzgkdtheory, G = 0 (Rice, ]966?. In fact, there is no contradiction at all

- limiti:age and crack models, since we have interpreted the crack in a body as

e g case when h ~ 0 (ER > f) so that G >~ 0. A comparison between the mo-
o amage and the crack model will be made later by considering the J-integral.

For the sake of simplici i
the plicity, let us confine ourself to the quasi-stati i
examining the J-integral in plasticity. = S e

z:ezg i;e gany‘deflnltlons of the J-integral in plasticity, according to the choi-

definitiin S?Z;tz yé A path-independent ?ntegral was obtained by Rice with the

g = ‘O.dE and the assumption of monotonic loading. Such an integral
1d for a stationary crack, not for a propagating crack. Another choice is

the elastic strain energy W(e - €P
S gy W( ), also see Nguyen Q.S. (1980). Because of the

(32) Jp = J (e - ePn, - T }ds
r

T
is path-dependent. If we consider the path T homothetic to the contour 3Z of the

damaged zone, then Jp d d i
. r depends only on the width i
obtain the following results: & Fi b st

$<2m : J =0

¢ = 2h JF =G (Fracture energy rate)
2h < ¢ < 2R 6 < I, E

2R< ¢ JT =G (Energy release rate)

e ! :

:Eere 2R is the helghF of.th? plastic zone. The integral (32) is independent of
te pftg’ Whenever I' is within the elastic zone 2R <I ¢. The discontinuity of J

ah ¢ = h'lS equal'to G. It is related to the jump of entropy through 3Z which

characterizes the irreversibility of fracture.

We summarize the results about the Jp-integral, Eq. (32) in Fig. 9, for damage

models in plasticity and elastici
: ty, as well as cracks models i i=
city and perfect elasticity : sl

1. Elastic-plastic damage (Line OABCD). The j i
. e jump AB ch
fracture energy rate G > 0. iloreover G > G. \is i s
2. Elastic damage (Line OAED). The j 1
, . : « jump AE 1s equal to G = G = .
The J-integral is path-independent for ¢ > 2h. v ° ¢ ’
3. Crack in perfect plasticit
el B T e P P icity (Curve OBCD). One has VG = Dp,

] 4..Crack in e¥asticity (Line OFD). G = G = J (for all paths).
Finally, our interpretation of the integral (32) differs from that of Eshelby
5}963), Roc@e (197§). The importa?t feature of the general model of elastic-plas-

ic damage is the jump AB .We notice that the balance equation (29) in the static

case can be written as VJF = Dp + VJBB' for large contour ' (2R<¢).

G =0
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DISCUSSION ON THE RESULT G > O.

The relationship between the damage theory and the crack theory has been e§ta—
blished by a limiting procedure, when h > 0. The resxlt G + 0 for a crack in per-
fect plasticity coincides with the paradox of Rice G° » 0, when Aa - 0: Kfoyrl
and Rice (1977) proposed a finite growth step Aa # 0 ahead the crack tip, which -
has been considered as a characteristic of the material, and they obtained by this
way a non zero crack-separation emergy G- = AW / Aa (; Azlbiinghtii worﬁ if un-

i i segment Aa prior to rupture). thou e models are
éiii::ini?etizzisiuigeczz ve%?us Aa ig simi%ar t% our curve OB%D for the Jr—
integral versus ¢ (crack in perfect plasticity). In dgmage theory, we o?taln.ah )
finite fracture energy rate G > 0 , Eq. (30) by classical balance equation Wét ou
a priori assumption on a characteristic dimension. The fracture energy rati
turns out to be proportional to the thickness o? the damaged zone, h éo e
loading conditions)... which is entirely deterwlned by.the matgrlal (e arac;erls
tics, and the loading conditions. For an elastic-plastic body in §mail—iga ? »
yielding, the elastic field is goverged by‘the KI-fa§tor (symge&rliz 732;n§ é .e.
G= (1 - v2)K2/E. The plastic zone size R is proportional to R = (X1 E ; g
Then, the ratlo G/G is roughly proportional to R/h, and appears to be an importan
parameter.

8. CONCLUDING REMAPRKS

A simple model of fracture by the propagation of damage has been preszntiiltg 5;
lastic material or plastic material. Perhaps the elastic models of mofe . t'a

little importance for engineering problems. However, the close form oThsotEelzns
are very helpful in understanding some general features of fracture. e ihy
predicts a characteristic dimension h which depends on the fréctgre strﬁss,t e_
velocity and the loading condition. It is exactly a characteristic of t 3 gtrgc
ture, not of the material. The damaged zone has a non-zero thickness, and 1t 1s

wake zone active plastic
zone
ﬁ Integral
J
: . 7
\\4\
P 2R
v
Path T
Damaged zone Z
Widthé

Fig. 9 Variation of the path-integral J with the wi@th of the
contour, for different models, elastic-plastic-damage OABCD,
elastic—damage OAED, crack in perfect plasticity OBCD, crack
in elasticity OFD. The characteristic values are G (fracture
energy rate) and G (energy-release rate).
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getting thinner and sharper with increasing velocity. An interesting point is
that we obtain the linear fracture mechanics when the fracture stress is (mathe-
matically) infinitely large. However, it is sufficient to consider a fracture
stress higher than 3 or 4 times the yield stress to get classical results. The
model does not involve any singularities of the mechanical fields. Stress and
strain are always finite, in elastic-damage model and in elastic-plastic damage
models.

The model of damage in perfect plasticity is discussed with the basic assumption
that the material cannot undergo certain limit strain €g (octahedral strain). The
theory predicts again a characteristic dimension h > 0 and consequently a positive
fracture energy rate G > 0. The last result is new, compared to the crack theory
in perfect plasticity.

A qualitative analysis of the dissipative energy rates has been presented. It
clearly shows the necessity to make a distinction between the symbols G (energy-
release rate available from the whole body) and G (fracture energy rate for sepa-
ration energy rate or energy release rate near the process zone). According to
the path I', the Jp-integral, Eq. (32), can be related to either G or G. In the
future, it would be interesting to have quantitative numerical analyses of the
dissipation rates, in plasticity and in fracture by damage. The important quanti-
ty to be determined is the thickness h which is directly related to the fracture
energy rate G, Eq. (31).

Progress in this topic would be helpful for a better understanding of ductile
fracture.

APPENDIX A

An explicit solution of the quasi-static problem of damage in elastic-plastic
solid under antiplane shear.

Statement of the problem.

Consider a strip shaped damaged zone Z, of thickness 2h, the front of which is the
cusped cycloid BB', Eq. (14). This model can idealize a fatigue crack which has
been propagating at a very low stress level, say K, = T,V2h, so that the undamaged
material is still elastic. Now, assume that the damaged zone is not propagating
and that a large monotonic load is applied to the body, the behaviour of which is
the elastic-plastic-damage law, with the yield stress T_, and the limit strain €p.

Determine the unknown boundary of the elastic and plastic zones and the limit load
KR.

Along the previous front BB', one requires that the stress-vector is null, the
yield stress is reached (KO < K), the strain € is constant, |e| < eg for K < Kp
and 1€| = €g for the limit load Ky corresponding to plastic damage.

At first sight, it seems that too much boundary conditions have to be met along
BB'. Fortunately, the problem was completely solved, i.e. a complete solution was
found by Bui (1980 b),satisfying both static and kinematic conditions. In what
follows, we write down the solution without proof.

Solution.

The stress and displacement fields in the elastic zone are respectively :
2

2. T,
(A.1) g = G2 = 2h log T
art? 12 n L
o
ol Gl 1 2h
(A.2) Wil s = i i ro)}

Vol. 2 AFR - B
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e 4 i iy -
where T lies within the Ser-Cerle lT|.< 18T %-< 8 < 5 - TEui,6§he elastic-plas
tic boundary is searched in the following form (¢ =
%2
Ml=‘ (cos2¢ + 1)
2
(A.3) 0
w, = K ginzg +289
dz = sin 2

2mt?
o
The curve (A.3) is a curled cycloid, fig. (10).

i 1 P, = .) the family of characteristics
In the plastic zone (p%astlc‘flaw rule € i c A O l) e ; Zf PR L g e
& consists of the straight lines a(cos¢ ;, sin¢) ; the center
is the variable point w
1 2
xw = — cos ¢
(A.4)
2h T
= —¢ -= 2
Yw m ¢ e 0

: : i
The 8-lines contain a particular line which is precisely the cusped cycloid BB

N1 = %~(c052¢ + 1)
(A.5) h )
N, = — (sin2¢ + 2¢)
2 T
= i i tant alon
The strgsses ?re 038 = To 5 GBa = 0. The strain 838 is found to be constan g
the B-line BB' :
1 2 2
= ——— [ K" + 2ht
(A.6) f3gM = gy | .

CUSPED

2h Plastic zone

N4

Fig. 10 Elastic, plastic and damaged zone in mode I?I from
Bui's solution. The front is a cusped cyclgld and the
elastic-plastic boundary is a curled cycloid.

L

Damaged zone
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The displacement field is constant along the o-lines :
(4.7) B g e (i
i um TO o
The solution given by Eqs. (A.1) to (A.7) is valid when Eo =
K2 < K% < £ .
% K \,Zhro (AueR TO)

Hence the limit load Kp is related to the material characteristics and the thick-
ness h by the simple formula :

(A.8) K. ZhTO (4u€R TO)

R
or equivalent%y : 5 €r
KR=2hTO (22 el
(It is very tempting to anticipate that a similar formula holds for mode I
&
K§=hoé(281)‘—l),eo=-(;—o
and K> = h OZ ) °

o
Physically, the finiteness of the limit load K implies that h -~ 0 when €_ + ® .
The limiting result is nothing but the crack problem studied by Hult and
Mc Clintock (1956), Rice (1968), for which the elastic-plastic boundary is a cir-
cle, see Eq. (A.3), h = 0. Crack model in plasticity is not compatible with an
assumption €, # ®. Tor the general case, €x # © , h # 0. The plastic zone height
R is found to be i
2 2ht? 2ht?
. 0 h o
sin{arc cos(- )} + = arc cos(-
K2 m r2

(A.9) R =

2nT

The plastic dissipation rate is

3 2 ht
(A.10) DA 2KK ( Ke T o )
p Ut 2mt m
o} o

APPENDIX B
Approximate analysis of the quasi-static resistance curve.

The solution of appendix A is obtained for a stationary damaged zone. For a moving
damaged zone, Fig. 9, there would be a wake zone behind the active plastic zone
which changes the result. However, it is expected from the solution (A.10) and from
a dimensional analysis that the plastic power is probably of the following form

(B.1) DP=AK3{< - B KKh

where A and B are some material constants. For the mode I, the fracture energy ra-—
te G is proportional to h, Eq.(31), while the energy release rate G is proportio-
nal to K. The balance equation (29),where V=da/dt, can be rewritten as

(=97 pn 3 dK (-v®)
(B.2) s F K =B o = g
The bracket of the right hand side of Eq.(B.2) must be a positive quantity (Dp>0):

(B.3) K2 > Bh/A
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a) Tearing modulus model.

Let us assume that B/A=0%. Then the differential equation (B.2) gives

2(1-v?) | dr?

EA = v

(B.4) (k2 - ho2){

From (B.3) the first bracket is positive. Thus we have :

dr? _ 2(1-v?) (X% > ho)

(B8 “da EA

2
This is a linear dependence between K? and Aa=a-a, beyond the threshold‘value Ky =
(Bh/A), the tearing modulus depending only on the plastic power analysis.

b) General model.

A more complex model can be derived from Eq.(B.2) by introducing a weaker assump-

tion that the damaged zone thickness increases during stable growth. For example,
. 2

let us assume a linear dependence on K

(B.6) h = o + BK®

The condition D >0 implies a threshold value of K?, namely
P

Bal
2 o
(8.7) RE =
Thus, Eq. (B.2) may be rewritten as
ak® . 1-v2, 1-Bo% K*-K}
(B.8) T 2(__——)(Z:§E-XKY:E?)
where
2
2 = 99
2 1-Boyg

From Eq.(B.8) we derive the R-curve of the a-K? plane :

E(A-BB) ) 2_.,2 K3
(3.9) a—-ag = ETT:GYSYT:EE%Y [KZ Ky + (K3 Kl)logﬁgji? ]

which increases monotonically from k% to infinity. Ee remark that K2§%§’ gr equi-
valently 0%§B/A. Otherwise, there would be a load K such that Eh/4<k <ogh, ?or
which the plastic power is positive, dKk/da>0, 4>0, the balance equation (B.2) is

not satisfied.

Yy
(a) (b)
K% K%
Damaged zone length
- o
Fig. 11 Resistance curves : (a) Tearing modulus model

(b) General model with increasing h.
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