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ABSTRACT

Analytically generated isopachic fringe patterns around crack tips subjected to
mixed-mode stress conditions are compared with experimentally recorded fringe
patterns obtained by interferometric techniques. A Westergaard type stress func-
tion technique is utilized for fringe pattern construction. Multi-parameter and
multiple-point data reduction methods recently developed were employed for opti-
mal determination of stress intensity factors.
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INTRODUCTION

The vicinity of a crack or flaw in a solid body is a region of high stress concen-
tration if the material is subjected to certain loading situations. By utilizing
fracture mechanics concepts it is possible to characterize the stress singularity
at a static crack tip by means of stress intensity factors K1, K2, and K3. In

plane elasticity problems the stress intensity factors K] and K, are associated
with opening mode (mode-1) and shearing mode (mode-2) crack deformation.

Considerable effort has been devoted to both experimental and theoretical deter-
mination of K-factors for a variety of specimen configurations and various loading
situations. Among the optical techniques which have proven very powerful for
K-determination, interferometry has been employed for mode-1 crack problems (Irwin
and co-workers, 1980). This study involves a comparison of analytically generated
static isopachic crack tip fringe patterns with experimentally recorded interfero-
metric patterns. The effect of higher order terms in the stress function series
expansion on the shape of the isopachics is investigated.

ANALYSIS

Consider a semi-infinite straight crack in an isotropic, homogeneous, elastic
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p]atg specimen subjected to in-plane lToading as shown in Fig. 1. Employing a gen-
eralized Westergaard type stress function approach (Sanford, 1979; Rossmanith,
1979) the stress components o_, o , Txy for a crack tip subjected to mixed-mode

X"y
stress loading are obtained by super osition of the stress field AR sines
Sk e BN ERAN T

and (i) (3=1,2) of the individual modes:

mode 1: og(1) = Re(Zy +2Y) -y Im(Zy' + Y')
°y() TRe Ly fy In(zy e v (1)
G e Re(Zy'+ Y') - Im Y

mode 2: %% (2) = 2 Im 22 +y Re Zé
Syley Y Re By (2)
Tey(2) T Re Z, -y Im Zé

where Re and Im denote real and imaginary parts of a complex function.

The stress functions Zj and Y are suitably chosen in the form
N 1

o n->
Zy(z) = Aoty (3=1,2) (3)
and
M m
Y(z) = mEOAm z (4)

where z=x+iy= reTe, the coefficients Am and an are real constants, and

Kj= Boj/?}l If, in general, the higher order terms an (n>1) are unequal for dif-
ferent modes (i.e., Bn]# an) the mixed-mode situation is called non-isomorphic
(Rossmanith, 1979). If Bn]= an, the mixed-mode situation is called isomorphic.
Classical interferometry is sensitive to thickness and index of refraction changes

in plane models usually employed in experiments. These changes can be related
to the first stress invariant I = g, * oy and by eqgs. (1)-(4), I becomes

Ll = Re(Z] +Y) + Im 22

N
n-% .
= nfor 2[Bn]cos(n--‘/z)ed-ansm(n--1/2)9] + mEOAm rMcos mo. (5)

For many applications the two lowest higher order terms (N=1, M=0) deserve re-
tention only. Then, the solution of the equation

K
1

5l =

- [cos g-(1-+r B1) - m sin g (1-r8y)] + Ags (6)
™

where Bj= Blj/BOj and m= K2/K], gives the governing formula for the shape of the
contours of constant cx-+oy. Such Tines have traditionally been known as isopa-

chic Tines or lines of constant specimen thickness. When I is determined optical-
1y, fringes result from the superposition of two interference patterns. The first

|
|
|

1053
when the specimen is in its unloaded state and the second in its loaded state.

The fringe order of the isopachic pattern, N is related to the stress invariant by
I = pr/t (7)

where t is the specimen thickness, and fp is an isopachic fringe constant that is

most easily determined by calibration with a known stress state, i.e., a disk
under diametrial load.

EXPERIMENTAL PROCEDURE

There are several methods of obtaining isopachic patterns, and in this study a
series interferometer (Post, 1955, 1956) along with a HeNe Taser was used. The
experimental arrangement is shown in Fig. 2. The inset shows the light paths
through the specimen. The two emerging rays form an interference pattern from
Tight rays that have traversed the model once and twice respectively. By adjusting
the first mirror a grid of interference lines can be produced and recorded by the
camera. A stop is placed in the focal plane of decollimating lens so as to prevent
other rays from entering the camera. The interference grid is an indication of the
taper of the specimen as well as the orientation of the mirrors. For the purpose
at hand the mirrors were aligned to produce a fine pitch. A single exposure was
made with the specimen in a slight preload. The specimen was then loaded and the
second exposure taken. The resulting doubly exposed film is thus a moire of the
two interference patterns, and the moire fringes are the isopachic contours.
Polaroid PN 55 film was used for the experiment.

RESULTS AND DISCUSSION
Several special cases of eqn. (6) will be considered in detail.

(a) Singular mixed-mode isopachic (B]= By = 0):
The governing formula takes the simple form

2
ro = r(8) = K F(cos § - m sin &) (8)

with

Ko

-L =
Ky (27) (e~ g™ (9)

A series of selected isopachic crack tip fringe patterns pertaining to various
values of the mixed-mode ratio m= KZ/K1 are shown in Figs. 3a-f, where Figs. 3a

and 3b are associated with pure mode-1 loading situation. Notice the close simi-
lz:gzy between the analytically generated and experimentally recorded fringe pat-
The integer higher order term of lowest order, AO’ does not affect the shape of
the isopachic, only its size. The parameter AO may be determined by considering
the intersection points Pi(ri,o) of two different isopachics of known invariants
Ii and I, with the positive branch of the x-axis.
(Der, 1978; Rossmanith, 1979)

Employing egn. (9) one obtains
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B Ii/F;'- Ij/rj
s e i
/r_i-/q
(b) Higher order term mixed-mode isopachic (B]# B, 7 0):
Equation (6) represents a quadratic equation for R= V¥ and hence can be solved
exactly:
1 T e
r=Me)=—-~7[li/1-4FK K= (11)
o170
(2F;K,)
where
8 .9
F_=cos 5 -msin
0 2 2 (12)

= 8 .8
F1 = s] cos 3 +m 8251n 5 -

If the higher order parameters, however, are very small, a perturbation analysis
may be applied where the smallest of the g-parameters is considered a small per-
turbation. This leads to the representation:

r=r(s) = r [1+20+50%+0(e%)] (13)
; N
with @ =K/ FlFo'

Figures 4a-d show the influence of various combinations of the higher order para-
meters 81 and By ON the shape of an isopachic fringe loop.

Stress loading situations with predominant mode-2 contribution and the Timiting
case of pure mode-2 deserve special attention. Equation (6) then becomes

[%cos%(1+rs])—sin%(]—rﬁz)]+ Ay (14)

LI =
2mr

which, for pure mode-2, reduces to

1K, |
Wl = —2—sin 5 (1-rg,) + A (15)
VZﬂP

Analytically generated and experimentally recorded isopachic fringe patterns are
compared in Figs. 3e and 3f, whereas the influence of the higher term B.|2 on

the shape of the mode-2 isopachic is shown in Fig. 4e. The mode-2 isopachic pat-
tern follows from a mode-1 pattern upon replacement of K1 by KZ and the transfor-
mation 6 - 6 -m.

Advanced techniques based on multiple-point data acquisition of the overall isopa-
chic fringe pattern may advantageously be employed for effective determination of
K1, KZ’ and the higher order parameters. The overdeterministic data reduction

method (Sanford and Dally, 1979), may easily be adopted for isopachic fringe pat-
terns (Barker, Fourney and Holloway, 1980).

Generalization of the isopachic method to dynamic mode-1 crack propagation problems
is possible under certain restrictions from both the theoretical and experimental
point of view. The analysis of a crack traveling along a curved crack path under
mixed-mode stress conditions is subject of intense research and offers considerable
mathematical complexities.
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a) Mode-1 (analytical)

MODE-|: & 1 ’
Fig. 1 Cracked plate specimen subjected to mixed-mode in-plane
stress 1nadipna

c) Mixed-mode m=1 (analytical)

b) Mode-1 (experimental)

d) Mixed-mode m =1 (experimental)
Spatial galere

HeNe-Laser  Filter

Aperture i !
Interferometric Mirrors Stop i |

e) Mode-2 (analytical) f) Mode-2

(experimental)

Mode1 Coated Surfaces Fig. 3 Analytically generated and experimentally recorded isopachic fringe
patterns around a static crack tip subjected to mixed-mode stress
Toading (A _=0)

Fig. 2 Optical arrangement for interferometric recording of isopachics o
about the tip of a static crack
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