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ABSTRACT
For plane strain problem, the history-dependent constitutive relations
and the plastic loading condition are given. The type of two-dimensional
elastic-plastic equations and the existence of the inner boundary layer
are discussed. For the elastic-plastic evolutionary problems with moving
boundary, the four contiguity conditions are given in very simple forms.
The theorem for the unloading boundary is proved. For steady-growth
crack. a fifth-order partial differential equation and five contiguity
conditions are derived. The asymptotic equations of predominant terms
are obtained near the crack tip. The analytical solution of the asymp-
totic equations is obtained. The results of this paper show that for
power-hardening material, if the hardening exponent is n, the singula-
rities of stresses and strains are: 74? 0
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INTRODUCTION

The elastic-plastic field at a crack tip is one of the central problems
in fracture mechanics. In different loading stages the field possesses
different characters. The most important stage is that the crack grows
steadily under quasi-static constant loading. In this case, the Mode Il
crack problem was studied by Chitaley and McClintock (1971) by restric-—
ting in elastic perfectly-plastic theory. For the same case, the Mode]
crack problem was studied by Gao Yu-chen (1980), also restricting in
elastic perfectly-plastic theory. As for the strain-hardening material,
Amazigo and Hutchinson (1977) have studied the problems of Mode I and
Mode II crack, but only for the linear strain-hardening material (n=1).
When the hardening exponent n>1, the problem is essentially different
from the case of n=1. For the case of n=1, in the asymptotic solution
near the crack tip, the plastic strains and elastic strains possess the
same order of singularity. Therefore, when n=1, the compatibility equa-
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tion is elliptic. After separating variables, it becomes an ordinary
differential equation wihtout any singular point. For the case of n>1,
in the asymptotic solution, the plastic strains possess higher order of

singularity than the elastic. Therefore, when n>1,

the compatibility

equation is hyperbolic asymptotically. Hence some inner boundary layers
may exist inside the plastic domain. After separating variables, the
asymptotic equations become ordinary differential equations with some

singular properties. The contiguity conditions for different domains are

formulated and the main features of the solution for n>1 are obtained.

1. THREE DIMENSTIONAL EQUATIONS

1.1 Constitutive Relatjons

Denoting by OU o Eii Uy {3 5 5? the tensors of stress, strain, elastic
strain and plastic strain, and by 3U the metric tensor, we have the

following relations for strain-hardening material:

e fif
s el
I AN :
= % g
el =6~ 1059,
2 S, . 5;=%~359i i)
N=puh(®)5 (i)
{ ;
/A::{ for plasti? loading (1.5)
0, for unloading
(1.6)

ij\2
o=(25;5")"

The dot denotes time-derivative, and h(g) is a function depending on the

material. For power-hardening material, we have

h(ory= 325 (s- )"

(.7)

where O, is the initial yield stress, n denotes the hardening exponent
ol

9
lows from (1.7) for uni-axial

and ¢ is a material constant. It f
tension g
T for o< ¢,
ol (1.8)
—E""C(G“Go)n for J=>0,
1.2 Type of Equations
Combining (1.1)-(1.3), we obtainh )
¢ = (1Y Sy 3n -
&; (F Ju 1 E9U3k1+2559'5kl)d (1.9)
Besides, we have the equations of equilibrium
and the compatibility equations
q%%+%3§fq%§FZWQF=O (1.11)

In order to ascertain the type of the set of equat
investigate the conditions under which the second-
with respect to coordinates can be discontinuous.

ions (1.9)-(1.11),vwe
order derivatives OU
Without loss of gene-
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rality, we may take local Cartesian coordinates x i
; ; ¥,z at the point unde
consideration, and take the plane x=0 as plane of,discontinuigy. From i
eqs.(1.9),(1.10) and the three independent equations of (1.11) contai-
ning second der%ygtives with respect to x, we obtain
5

A(S;ZJ)_{_ = 0 (1.12)

where... denotes terms involving derivatives of S; with
respect to x

of.order less than 2, and A is 6X6 matrix. The cogdition forpdisconti—
nuity across the plane x=0 will be det |l Al|=0, or

i—v2 . 3h 7 2

= o (S SIt Ansis t 20,55 =0 (1.13)
ggé(1'13) holds true only when the elastic deformation can be neglected

6‘)’2: 5)': 51:0 ("[4)

Bgt eqs.(1.14) generally cannot be satisfied on a surface or in a re-
glon..Hence fgr strain-hardening materials, the basic equations of the
elastlc—Plastlc incremental theory are generally elliptic. They can be
hyperbolic only in extremely exceptional cases.

2. PLANE STRAIN PROBLEMS

2.1 Basic Equations

For plane strain problems we can obtain by the use of the conditiong=0

o G=€G+v ok : (=1, 2) (2.1)
Opz%iiexlo(— —%EH)Z/\ Gfexl:v(—zf—H)G/f .2)
H={f)\df : : A=ph©)G e (2.3)
o Flotay rzcagr]® e
e=Lt-v (2.5)

and [, denotes the time when the material point b i
> T hen egins to . -
ver, it follows from (1.1)-(1.3) . 5 i

bp= Ej‘}ﬁffﬁ (2.6)
+V Ev) Y ’
55/5= LE_(‘ZF* Et(1 +V) 63’ jal ¢ (2,7)
2
. G Eagr g, o 2y
Hﬁ;& 5g;da23f5,ﬂ , which are introduced formally, are different from
o(/j d/]
Denote by ? the stﬁps% function, and then we have
o
cP=C i AR (2.9

d
where C ﬂ::( —d)(f‘ g=det|lg sll» and V7, denotes the covari i i
The compati%lity eéuation w?ii'be % i ey

[—p? d¥ B i

- T 22yl € V"‘VPEH_ (2.10)
1-y? - Y 86 :

where A=Y, v*1s the Laplacian operator -
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2.2 Type of Equations

From (2.2) follows

G,=5EA(2¢-%) (212)
d from (2.4) follows ’ .
= 5:2}8{(5&/55%2_'(5:[@5—%ez(o}dp)}jée?(od—df,)of} (2.13)
From (2.12) and (2.13) one can obtain for plastic[loading
; A R 2E e Bl o
A=hS= (%779 (57 + SEE (4 a,7’] B (214)
where o " o I y 2
BP:V vp(f)—ZL‘SP[Aﬁo(I—B—eZH?E dp] (215)

The compatibility equation (2.11) can be ﬁfitten igztge ffr? g
¥ 506 4+ B} wviA+(wN[Tiop(i+5e)-4 <7

U2y 4 2 i
+EA[2ag 1+ 5e0)-5aG]=0 (2.16)
Substitution of (2.14) iito (2.16) gives
d .
AP/‘; VD(VP\ZuV ¢+... =0 (247)

denotes lower derivatives oﬁd zland 5 —f
AR i a2 ol ol 2 —-—62 AQ—GC. 2
AR=(- & 8+ By B [+ 5 €7 (28 ' @i
Now consider 'the coefficient of the highest derivative of 79 with
respect to x% in (2.17), which for o =1 wglédpe . g i
2.2
AI‘I‘:a-vZ)Jr[Zl(v,v‘jo-gvzﬁa)+Ee(Ay—g,)].[j——Eh g5 (A?“fp)] (2L

It is easy to see that generally A1: is not vanishing, and so eq.(2.17)
is elliptic.

where ...

The situation is, however, somewhat different near the crack tip which
is a point of stress singnlarity. Suppose the hardening exponent.n?1,
then Afi can be asymptotically much smaller than the other coefficients
(for example, All/AYe1/Eco™ < 1,if V.v't—%vzf =0), and eq. (2.17) can
be asymptotically hyperbolic at the poin of stress singularity. Owing
to this fact, there can occur certain kinds. of inner boundary layer.
The line of discontinuity [ is expected to be the 1limit of an inner
boundary layer.

2.3 The Contiguity Conditions of ¢

We assume that [ is an arbitrary curve on the elastic-plastic plane.
In the vicinity of [ we take the parallel-curves family of [ and their
straight normals to be the coordinate-lines, and denote the coordinates

by s and n. The contiguity conditions of stresses for [ can be written

as T
[fl=lml=0
where [ﬁdr denotes the gap of +‘across [Tes

(2.20)

We can prove1 that the contiguity conditions of displacements can be

written as

(Es]F: 0 (2.21)
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d o 955} dd it
2l s e e e (2.22)

in which 9 is the angle from x axis to the normals of [T . We can also
prove that for hardening material, in general, the strong discontinuity
(of the strains or stresses) cannot exist , while the weak discontinuity
(of the derivatives of strains or stresses) is usually the boundary be-
tween elastic and plastic domains. For the weak discontinuity, (2.21)
and (2,22) can be written as

d

37‘1]r:3 i (2.23)

i=pirogy 1 et o ou & i

E [aﬂ]r Y [)\][_{2((55 Gn)+ S € (AP dp)} (2.24)
where V is the normgl component of the velocity of moving [ .

Ve = (2.25)

Here t* denotes the time when the line of discontinuity [ "sweeps" the
point under consideration.

2.4 Contiguity Conditions of ¢ for Weak Discontinuity

In some cases, it is necessary to take as the basic unknown guantity,
By use of the same method as in another papere, we can obtain three con-
tiguity conditions of ¢ frome (2.20),(2.23) and (2.24).

(7). (1o

A (2.26)
1=V?[ oy iz 2L B "
E [57?;];}‘ mr{z (G- 6,0+ 3¢ (ap %)} < (2270
When (2.26),(2.27) and (2.11) are satisfied, in order that ¢ and &ls

may satisfy (2.10), the following supplementary condition must be satis-
fied by é ;ﬁ
)

ai]dz 30 i 2
2P 128) 830 fr o el 0o o8

rods
The proof is omitted here.

2.5 Theorem for the Unloading Boundary

The location of the loading plastic boundary can be determined by g=g,,
but the unloading boundary cannot be determined in such a way. Hence we
give the following theorem.

THEOREM: If [ is an unloading plastic boundary, then
6l Slap=061r=0,  Aly=0 {ze)

where the subscripts [(e) and [ (p) are used to denote the values on
the boundary [ at the sides of plastic unloading and loading domains.
PROOF: From (2.2),(2.20),(2.23) and (2.26) we have

(OF]FZO ’ [601[3],—: [(‘5115],-: [(jn]r:O

Further, using (2.12),(2.13) we can obtain

(2.30)

1,2 See Gao Yu-chen and Hwang Keh-chih, On the formulation of plane
strain problems for elastic perfectly-plastic medium (unpublished

work).
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2 (c6l=20(8)= 3{§(ds—dn>+§ez(a<f—dP>}[@]r

Bl
,g—ézE(Af—O;,)Z[/\]r (2.31)
Using (2.27) and noting tgat [Fg]r== (3*¢/5m*] » wezhave
2 2
2alel= - %;,T{[z(ffs—a,)Jr_j%e (a9 -]
+& 0 v(ap-2,) A (2.32)
On the other hand, fz‘-?ogn (1.4) we have l gl 15 iy
26(‘5",(',): T)\’F(f:) 2 ree L :
A Ll - 2e2009-G,)
e Zdﬁlr(e)— {,ﬁf ?l((j; dh)+3é (A? Of;j 20 /\I =0 (2'34)
+—‘3‘—ezE(Af*6,,) + 71‘} e
The unloading condition demands (2'35)
(ﬂr(e)éo (2,350 .
Comparing (2.34) and (2.35), we 0 N s Loy
= L la TS 6%) ¥
ry re) P

3, THE STEADY FIELD

3.1 Equations

i bserve the tip-field
e of a crack growing steadily, if we o :
%r;o;hg ;gerence system moving together with the crac.:k—tlp,ftheea gztis:egx_l
of the field will not vary with time. Hence in'the fixed referen y
tem, for any quantity given in Cartisian coordinates, we have
e’

30
Cy=2(O=-%) S

the x-direction. By using
Here we assume that the crack grows along -
(3.1), the eqgs. (2.2),(2.3) and (2.8) can be written as

( Q= -2Eep(-2EH)( M h og eP(5EH) 2dx (32)
[A=-rhigde " = ehs2

x X 1 % b
=gt NItz dpl s i Ty (1Y

tic boundary [,
i X, 'denotes the value of x at the front plas A
glzhi?)l 'f‘he compatibility equation (2.16) becomes

2 A __L_,L 2 E 2
_«;EzAAgiz+<w%m73(Ag§)-z'amgg [ap(-§€)+5€G)

2 ol Uy ‘--[_‘L‘ 2 i
+\';(lu§§){V"(Ay)(lwtg—‘é)—;iézvo;,}ntzi/lj—f nag(i+e)-Leag=0 ()

3,2 Contiguity Conditions for Weak Discontinuity

The first three contiguity conditior}s of ()0 are given by (2.20) and
(2.23). The fourth (2.24) can be written as

)
2133 2 ,2 i = (35
i (28] ko] 3 e ) 5y~ PO )
Noting

{\/ = cos 9
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{ Q.g_—: g-qco519—9,l—751'ﬂ9 (36)
oX an 35
and g{r—_— & =cozns}iat loading plastic boundary, we have
f=p7ra 90 (Lrs_ 2,2 ! =
2l hop 576 arei(ag-g)f = 0 (37)

for loading boundary. As for the unloading plastic boundary, (2.24)
becomes by vixj'tue of (2.29)

[%_f;] s (3.8)
n .
The fifth contiguity condition (2.28) of (the fourth of ¢ ) can be
written as = o2c5%q )2 d 3¢ ) 20/ L

¥ [’%]r ——E—famg““ [an3],-+ca.s‘9 [an{ﬂh(a)ﬂ(f e

E oh
+260¢-g)} |~ agh@ 4 f7 (5= %+ 2etag- g ul]
s Afa ko 10 e

3.3 Simplification of the Equations

As is well known, both the stresses and the strains have singularities
at the crack tip. If we are intereated only in the principal singular
term of each quantity, the equations can be greatly simplified. Hereaf-
ter we shall be confined only to the case of power-hardening, and assu-
me n>1. Owing to the singularity of stress, the term O, can be neglec-
ted in (1.7), and then we have

h(c)=2nca™? (310)
Now we would expecg
tf,> £ (3.11)
On the other hand3 s s
£oL @l Zt e = (302)
e B ;

Hence we may neglect f;j and 0/ in the total strains, and have from

(2.6)-(2.8) el e
g]::—fx:i—ﬂci o) (o‘x— 6},)57(0/)( (3 /3)
y ;
i A n2 20
fy= —Erc] AT,
where O is given by (2.4). From (2.12) one obtains
‘ cEc™!(ag-6,)~ Gy~ O (3.14)
and then A(f‘g {
iy g
(o3 cEc™" (315)
Hence we can neglect the term jnvolving(j:—o‘r in (2.4) and obtain
0=13 [ (a9 )+, ] (316)

FPinally, after neglecting elastic strains, the compatibility equations
(3.4) can be reduced to

5 We use the symbol "~J' for quantities with the same asymptotic order
of magnitude.
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1 (99-%9")(6"2 29)-(v-4v) ¢t 2V vz(o"’za%?)-\gvf
= -2 —
5 \70((0'" Zgg)-v"‘(zs?)-[-—é—dn g}%AA(f =0

for orthogonal coordinates x*.

(3.17)

3,4 Simplification of the Contiguity Conditions
).

@ @——Elastic domain
- Primary plastic domain,loading
/; —Plastic domain, unloading
@ - Secondary plastic domain,
reverse loading

Fig. 1

The equations for the case of hardening materials are elliptic. Hence,
the solution inside plastic region will be sufficiently smooth and there
will generally not exist any lines of discontinuity. There can exist
weak discontinuities at the boundary between various domains (Fig. 1).
From(2.20) and (2.23) the first three contiguity condition at " must be

N(321= (8] ~0 c18
The fourth and the fifth contiguity conditions are (3.5) and (3.9).

For the unloading boundary I; , the fourth contiguity condition is (3.8)}

ide. 3
[333] —0 (3.19)
on &
With the predominant singular terms retained, the fifth condition (3.9)
is reduced to > /3G
ELY ) or —(__ I =0 G- 0 0
an[ré( ’ IM\ aX/Irg(p) At ey (3.20)
Form (2.29), the unloading condition at ['é is
>\| =0 or 20 =0 (320
B oX 11y

Finally, at the reloading boundary )’; , the fourth and the fifth condi-
tions (3.5) and (32-9) reduce to S
=2 —op or 215/ :_(_ =0 if G6-6%0 (322
/\’l’o(f» aﬂlgm ’ X Inm on\ox’Ip) 7 S )
Besides, the following reloading condition at P must be satisfied

olp =3l () (3.23)

4. THE FIRST VERSION OF ASYMPTOTIC ANALYSIS
We will first try the power expansion, and be confined only to the first-
order approximation. Let r, 0 denote polar coordinates and put
(f)=r2"5f(m o<d<ay (A1)

then
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GL=r a2 e G S s )
- ’ 2 { 4.2

in which {qu ! 5(1_5)3[ il S/}’[j({?)J/Z ( )

(o= (" $(2-Of 1+ (1-8)%(F)? (4.3)
From the O expression in (4.2), one obtains

/\:_ZLnC,B(ﬂH)/Zr#H/H) G, (0) 44)
where =

G=Scos6-qM/2 4 Lsing- g 7

{ ! g B 7 “,5)

M= (n-16

Substituting (4.1) and (4.4) into (3.17), we are led to a lengthy ex-
pression for fV:

e Fim, 8,0, 8. £ 0 70 1) “.6)
The contiguity conditions are [f ] 5
=00 = (= e
{ G li— o gG‘/ao ’Tr-p—a: ¢ s
(f = [f/]rg,: [J[”L;,:O o (48)

o s :
Gul, o= 0G/38 ]y 70 g(n—/?)(jfn/;)z___j(?r—)’)(slnb

For the Mode I crack, f(6) is even function, so the boundary conditions
are
{f(n')=f’(n)——— 0 4
/7 " ( 9)
flo=f"o=o0 '

Moreover,'since coefficient of the highest derivative in (4.6) vanishes
at 0 =0, in order that the solution may be regular at § =0, we must

demand %o =5t {nzé“(z— S)ta-§ [(2-8)24p)-§(2C2n-1)+
+ntunen) ) lo-4 2yrt- 7 [flord -8 ] (f ’?0))2} (4.10)

Using the prevj..ous conditions, for fixed value of n, we can calculate
the coyrespondmg value of . This is an eigenvalue problem of nonli-
near fifth-order equation. We take the value of n, § , £"(0),f(0) as

follows ﬂ:‘—'js 9 2 3 3} 4) 55 5 0_0]< 5< 048
~(2-6)< f(0<-096(2-8), fror =1

The calculation was performed, but the results show that there is no
proper set of n, § and £"(0) that make the first two of (4.9) to be sa-

tisfied. Therfore we think to guess that the assumed singulari =
is unreasonable. e siETy °

It should be noted that here we have not taken into consideration the
possibility of discontinuity across characteristic line for (4.6)
(0,—0g=0)within the plastic domain. In our numerical calculation perfor-

med,.nowhere did 6,- 6y happen to be zero in the plastic domair. This
conflrms the continuity of f(6) and its first four derivatives in the

E}asi}c domains, since discontinuity can occur only across characteris-
ic line.
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5. THE SECOND VERSION OF ASYMPTOTIC ANALYSIS

The unsuccessful attempt made for the power expansion in the first ver-
sion of asymptotic analysis suggests the logarithmic expansion. We shall
also consider the discontinuity across characteristic line r; within the
plastic domain (Fig.1,2).

5,1 Contiguity Conditions for Line of Discontinuity within Plastic Do-
main

As mentioned before, with elastic strains neglected in the neighborhood
of the crack tip, the equation (2.17) is asymptotically hyperbolic with
respect to ¢ . Similarly (3.17) is hyperbolic with respect to A (or
s"~230/9X). Hence there can exist discontinuity across characteristic
line [; within the plastic domain in the asymptotic sense. By the asym-
ptotic sense we mean that the discontinuity results only as the crack
tip is approached. The line of discontinuity is the limit to which an
inner boundary layer shrinks as the crack tip is approached. In the cru-
dest approximation, the inner boundary layer can be replaced by this li-
ne of discontinuity. It can be proved4 that the equation for characte-
ristic line [; 1is 5.0

! 2 .2 - = i

L(g-ot5e’ (29— 9)=0
The first three contiguity conditions at [; are (3.18). The fourth con-
dition (2.22) can be writ;en for steady gieﬁg as¥

1=p2r°¢ d it

2 (2] 2 9 tan [€hs ] =2 5 ensli= O (5.2)
The fifth condition can be obtained from (2.28) by adding a term
SV s s L o 0 Trow (3.9) by pedine g e ~2(d29/ds*) (L. I,
to the left side #. 4

5.2 Asymptotic Expansion
For simplicity we shall be confined to the casey’=4%, hence € =0. Assume

(5.3)

the logarithmic expansion

X 2 A -7
(F:rZ(ln_?)nZ:o([ﬂ?) J(n(g)
Then the stress components in polar coordinates will be

c=(ln A7 £+ 2f0+:§ (In ) "( fa'+ 2fp= (A=11% 1) fn- ]}

o= (In B {2f+ (ln &) (2fi-3%f0) (54)
+3 (1n )7 (2fpm 3047+ Dot o7

G=(ln é)d{—fo'— :(ln é)’"[f,ﬁ’(d—m oo ”

Substitution of (5.4) info (2.4) gives

s=BK", K=z (9~ )4 o (5.5)
h 1
whose expan; ::n;,[naé";zo({Ko(‘y)'{' ((n_é)—l K, (6)+ }
K (0)=3 5"+ 1" (5.6)

4 gee footnote 1, 2.

K(O=4f (4 28 )+ 2 5 (£ £)

o‘=r3'(ln$)°({[f<o(0)]y2+2l(ln é)”m(o)/(mwﬂyﬁ oo} (5.7)

Substituting (5.7) into expression for A in (3.2) (form=1) and using
(3.10), we obtain /A

An-1) -1
A=~ AR A4 () AL+ -} (58)
Mfo)= Zf_LI’IC‘3(n+1)/25I"75 Ko(n-a)/z Ko, (59
A (©6)= Z,nCB(nM)/,z Ko(n—E)/Z [50;(9((77- 3)K0/KI+KOK;)+ZO(0050K5J (510)

The compatiPi&}ty equation (2.16) can be written in the form
- 2 i
TaagﬂAA)A?_(vdvﬁA)wﬁ g-5a(Aap)=0 (510)
We apticipaﬁe that the elastic-strain term in (5.11) has a less order
of singularity than the plastic-strain terms involvingA This anticipa-
tion gives { ;

X = e (5/2)

Thg compatibility equation (2.10) for the plastic unloading domain [I]
(Fig. 1) can b% written as

1: =1 AA(erjZngf(}/):O 513)
where &7(y) is the plastic strain in domain I . Eq.(5.1%3) suggests the
expansion for the plastic strains

and

where

e =(/né)d+;{fdﬂo((9)+ (In é)"’gd M (5.14)
+1 -l
gn= (In ﬁ.) {at(nB) - } (5:15)

5.3 The First Approximation

Substitution of (5.3) and (5.8) into (5.11) gives for the first appro-

ximation d2

(E+)(f @A 0)=0 (5.6)
Its solution is

f)\fo)=A;5in0 1B, c056 (517

whgre A %b are constants of integration with i=1,2,4 for plastic do-
mamsb@;{n i respectively (Fig. 2). Substituting (5.9) into (5.17),
one obtains

( 1)) N-3Y2 w2, o 7 .

gnc3 sind K, i (f,+4f,)=A;sin0+B;cos¢ (5.18)
For domain (D , letting §=0, we obtain B;=0. Consideration of symmetry
leads further to A,;=0. With £'(0)=f"(0)=0 as reguired in (4.9), the so-
lution of (5.18) is

i f ;
fo)=a+zFes26 K(0)=F? for domain(D (5:19)
The characteristic line [; will then be located at =T/4 (Fi
gives the figst approximation for(§tresses in domain(:{. SR el
SO=2a-Fcos26 , C2=2a+Feos20, = Fsin26 (5.20)

or, in Cartesian coordinates,
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32=2a-F, Oryo=0 (5.21)

Couditions (3.20), (3.21)at the unloading boundary [z , and conditions
(3.22) at the reloading boundary [, can be expressed respectively as

O=da+
g0 =2a+F |

= "i.__)\a = <5-22)
/\0 ’rB a5 de IFB @
& /\ =0 Cl)\" =0 (523)
°llp 7 doln

Form (5.17) and (5.22) follows A,=B,=0, and from (5.17) and (5.23) fol-
lows Ay=By=0. Hence the solution of (5.17) which/satlsfles the contigui-
ty conditions (3.18) at [[, i.e. ff"]n:(fo/]r.:ffa'lr.: o , will be

)CO(O) =a-F(0-4), K,(6)=F? for domain (2) (524)

And the solution of (5.17), satisfying the traction-free crack surface
condition £(m)=f'(m)=0 in (4.9) and the reloading condition (3.23),

Mg £,(6) =4F(1-co526), K, (0)=F° (5.25)

Owing to K.(@) being constant Ao(0) is uniformly zero in all plastic
doma?ns f 2 and , as caﬂ be seen from (5.9). Then the expansion
(5.8) for A will begin from the term A (0) . =

A= wa ([n%)_l/\z(ﬁ)h.. 1

/\1(0):#7153("“)/2/—""‘3{51‘n6-/(]’+ 2o com.,f?}

We mention in passing that the vanishing of Aa(d) does not invalidate
our anticipation that the elastic-strain term in (5.11) has a‘less order
of singularity than the plastic-strain terms, since the elastic term
2

Fraasy
also venishes to the first approximation for the expressions of £,(0)
(5.19), (5.24),(5.25) for domains M ,(@ , @ . In Fig. 2 are shown the
stresses in multiples of (1n A/r)* and the fields of characteristic 1li-
nes (6~ 6p=0, from(5.1)) in domains ®,Q, and (@ .

for domain (@)

where

(5.27)

Fig. 2

: : - ; £
For the unloading domaln(:) we can obtain the first approximation
the compatibility equation (5.13) by substitution of (5.3) and (5.15)

22 (g D — o 23
Its solution is ) i
£(6) =+ hyO+ hy cos 20 +hy sin 20+ f(6) (5.29)

where h , h,, h3, h, are constants of integration, and

i

i
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o=~ ———(:7!1_)3;'? {(cos 20-1) (n5in6+(0+5cot§)sin26 } (530

We now have eight constants to be determined, namely: a,h,,h,,h;,h,,a,

and two angles B 7 On the other hand, we have only seven conditions
for their determination: (3.18),(3.19) at [; and (3.18) at I3 :

[fo]rf [f"/]rf (fﬂl']%:[fow]@: o (5.31)
(el =0 (532)

The one lacking condition will be supplemented by strain analysis (see
eq. (5.43) in the next paragraph 5.4).

5.4 Strain Analysis

The expansion for stresses Ous in Cartesian coordinates is from (5.4)

@P—:(lné)“{qpo(@)»r ([né)"‘qu(dﬂ } (533)
Using (2.8),(3.1) and (3.3),(5.33), we obtain
5in6 & £0(0) =Af6) c;ﬁo(o)—zljd/, ol (0} (5.34)

Since A, (0)=0, it follows that &upo(0) 1is constant for each plastic do-

main. ®

apo (5.35)
where i=1,2,4 for domains @ ,@ , @ . For the domain () , EPO can be
determined from the strains along the x-axis, where the stresses are
asymptotically proportional,with fixed principal directions. Along the
x-axis (4 =0), we have from (3.3) to the first approximation

Q%O(Q)::consf:

oA+ 1 [0) &
LI o (o S ) 539
where A;(0) can easily be found from (5.27).
/\,(0)=2io<nc~3("+')/2 [ et (5.37)
Substitution of stresses (5;21) for domain (1) into (5.36) gives
1
G e e (538)

The r-derivative of strain gap across [|; appears in the fourth condi-
tion (5.2) across [; . Assume that the angle .9 has an expansion of the

form
I=9+ (Ind) g+ (5.39)

Then the second term 2(dJ/ds) tand [Eﬁs]n in (5.2) may be neglected for
the first approximation, and (5.2) reduces to

175”2[#"}]“‘{'2(°(+1)[Eroo]n=0 (540)
which , together with (5.19) and (5.24),(giv?s
= _20-pY

(Eraa]rl— 5r00 (27?+ O)"Ergo (’zf" O)i= E(’o(il) £ (54/)

A suggestion may be made that the strain €ap (5.41) is negligibly small
as compared with strains themselves (5.38), [£,,]- = O. This can be
explained by the fact that the contiguity condition (5.2) gives only the
r-derivative of the strain gap, However,since the strain gap exists
only in a very small near-tip neighborhood, with its scale r, negligibly
small as compared with the scale of plastic region, e.g. the constant A
in 1n(A/r) the strain gap, which is obtained by integration of its de-
rivative over very short interval, will be small. The strains f@ for
the domain @ will be 552
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(M+1)/;
6'?2—“2:—2{_3 2'C /_—n+ [Efoo}r‘ ’ ggoz & (542)

where [&mo]n is given by (5.41) or taken to be zero. Since the strains
are continuous across the unloading boundary [g , which is a line of
weak discontinuity, we obtain by comparison between (5.15) and (5.42)

1 oamri)2 el
Bt 3 eF " [Cge =0 (5.43)
(5.43) is the supplementary condition mentioned at the end of the fore-

going paragraph 5.3. The strains in the domain () can be similarly de-
termined?.
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> The numerical calculation for the determination of constants is being
undertaken and we hope that some results will be presented at the ICF 5.
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