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ABSTRACT

A finite element program has been developed to analyze the deformation of a creep-
ing body that contains a stationary, macroscopic crack. The material is modelled as
elastic-nonlinear viscous, i.e., the total strain rate is given by € = G6/E + Bo® in
uniaxial tension. The program reproduces the features of the deformation field which
can independently be derived by analytical methods: Near the crack tip, HRR-type
stress and strain fields are obtained; in small-scale yielding (i.e., at short

times after a step load is applied), a boundary layer computation yields a creep
zone that grows in a self-similar manner; for long times after load application,

the expected steady-state stress field characterized by the C*—integral is attained.
The transient behavior of a CT-specimen from small-scale yielding to extensive

creep of the whole specimen is considered in detail. The results are compared with
analytical approximations, and conclusions are drawn for fracture mechanics under
creep conditions.

Finite elements, stress analysis, creep fracture, fracture mechanics.

INTRODUCTION

Failure at elevated temperature due to macroscopic creep crack growth has recently
received growing attention. To develop fracture mechanics concepts for creep condi-
tions the detailed knowledge of the stress and strain fields and their time-depend—
ence is essential. Analytical work on this problem dealt with step-loading of a sta-
tionary crack for Mode III (Riedel, 1978) and Mode T (Riedel and Rice, 1979, and
Ohji and others, 1979). The material was modelled as elastic-nonlinear viscous ac-
cording to the material law € = G/E + Bo® for uniaxial tension, where E is Young's
modulus, and B and n are parameters of Norton's power—law creep relation. The stress
and strain fields in the vicinity of the crack tip were shown to be HRR-type fields
(named after Hutchinson, 1968, and Rice and Rosengren, 1968), viz.

Gl TR e e (1)
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where r,@ are polar coordinates with origin at the crack tip and € = o lying di-
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rectly ahead of the crack tip; Sij(e) is a tabulated function describing the angu-

lar dependence of the HRR-field. The load- and time-dependent stress amplitude A
is given analytically for short times after load application (which ensues at the
time t = o) by

2 1/(n+1)

. 0Ln[w(r:}:)gmat] ' .

Here, a, is a numerical factor which is only approximately known from the analyti-
cal work. The stress intensity factor K is the relevant load parameter for short
times ('small-scale yielding', abbreviated as ssy hereafter). For long times, the
whole specimen creeps extensively, and a steady-state, time—-independent stress

field is approached. The HRR-stress amplitude is then given by

% 1 +1

(Sl 1 (3)
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where T is a numerical factor given by Hutchinson (1968). The path-independent
integral C* defined by Landes and Begley §}976) is now the relevant load '
parameter. Riedel and Rice (1979), and Ohji and others (1979) have, somewhat arbi-
trarily, defined the characteristic time to distinguish between short and long
times by equating the short-time and long-time stress amplitude. This leads to

Al (1)
9T e
where an approximation for the factor a, has been made. Eq. (4) is for plane strain;
for plane stress, the factor 1-v must be omitted.

The aim of the present study is to assess the validity of the approximation in-
volved in the analytical short—time solution and to investigate the transient be-
havior of a fracture mechanics (CT-) specimen from creep on a small scale near the
crack tip to extensive creep in the whole specimen. The relevance of the character-
istic time for the overall specimen response is also explored. The analysis is
based on the small-strain compatibility and equilibrium equations of continuum me-—
chanics and on the elastic-nonlinear viscous material law generalized to multiaxial
stress states employing Hooke's law for the elastic strain rate, and von Mises'
flow rule for the creep rate, which is assumed to be incompressible.

THE FINITE ELEMENT PROGRAM

The constitutive equations have been solved by step-wise time integration following
the formulation of Kanchi and others (1978). In each time step, a linear problem
for the stress and strain increments, Ag and Ag,is formulated and solved using the
finite element method.

Since the instantaneous response of an elastic-nonlinear viscous body to a step-
load is purely elastic, the stress field develops from an initially elastic field
with the characteristic square root singularity at the crack tip. Subsequently
rapid creep straining and stress relaxation take place near the tip. This behavior
tends to render explicit schemes of numerical time integration unstable. Therefore
the time integration is carried out in an implicit manner. The creep strain incre-

ment AEE? that develops during a time increment At is written as a weighted sum of

the inital creep rate plus the prospective creep rate at the end of the time step,
times At. The prospective creep rate is approximated by a truncated Taylor-expan-
sion of the creep rate around the known initial value. This leads to
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Aeij = AtLegg + X<a€§§/aokl)A0k1] 5 o<yx< 1 (5)
where the creep rate and its derivative with respect to stress are understood at

the beginning of the time step. The summation convention is applied, and X is the
welght factor. Equation (5) is a linear incremental material law relating the creep
strain increment to the stress increment, Ac. The elastic strain increment, Ae-AgCT,
is related to Ao by Hooke's law. Further, Ac must statisfy the equilibrium equation,
and the total strain increment Ae must be a compatible field, i.e., it is derivable
from a displacement increment, Au. Together, these requirements form a complete set
of equations for the incremental quantities. From the principle of virtual displace-—
ments the finite element incremental equilibrium equation follows

7 BT p*B av Au = / BT p¥* ¢°T At av - AR, (6)
v v

where a formulation for small strains, and the notation of Kanchi and others (1978)
has been used, and AR is the change of external load during the increment. Since
the matrix D¥ depends on the partial Beig/Ble which varies in time, the master

;tiffness matrix has to be recomputed in each time step. Unlike methods involving
iteration this foreward gradient procedure is only conditionally stable but allows
for a much larger time step than explicit methods without loss of stability or de-
terioration of accuracy. The initial time-increments are chosen according to the
stability criterion proposed by Cormeau (1975), which yields values between 2:10~"n
for plane stress and 10"°h for plane strain. Empirically, it was found that, later
on, the time steps can be made larger than required by the criterion by up to a
factor 100 when the steady state is approached and if the 'leaping' technique sugges-
ted by Bassani and McClintock (1979) is applied. This technique means to intersperse
3 to 5 short time increments for re-stabilization after the long time steps.

E%ght—noded isoparametric elements with straight edges are used throughout. At the
tip, collapsed quarter-node guadrilaterals (Barsoum, 1977) are utilized. Numerical
difficulties, which arise from the incompressibility of creep deformation, are

dealt with by either under-integrating the element stiffness matrices (Naylor, 197k)
or by using a modified variational principle (Nagtegaal and others, 19T4). Both me-
thods reproduce the (incompressible) HRR-field correctly.

In the computations, the material parameters are given the following numerical val-—
ues: n=5, B=10"'° MPa~5/h, E=1.50°10° MPa, Poisson's ratio v=0.3. A CT2-specimen
according to ASTM E-399 is considered with crack length a=50 mm, ligament width
W-a=50 mm, i.e., a/W=0.5. The applied load per specimen thickness is P=2.07 MN/m.
This implies’ that the net section stress is o, =P/(W-a)=L1.4t MPa, and the stress in-
intensity factor is K=63.2 MN m~°/2. Dimensional analysis shows that the numerical
results can be applied to any other specimen size, net section stress, Young's mo-
dulus and creep coefficient B by normalizing all lengths by W, the stress field by
the net section stress and the time by 1/(EB03_1). The stress field has the form:

L

Oij(r,s,t; B,E,a,w,on,n,v)=0 °F (w’

n=1_ &
n'Ti; 9, EBtOH H w,n,V) . (7)
Here, F;: is a dimensionless function of its dimensionless arguments. Note that a
further reduction of the number of independent variables is possible in ssy (Riedel
and Rice, 1979). In the present study no direct use is made of this latter possibi-
lity. Rather, we consider it as a check on the reliability of the finite element

program if it reproduces the predicted self-similarity of the stress and strain
fields in ssy.



SMALL-SCALE YIELDING

The case where large creep strains are confined to a small near-tip zone is treated
as a boundary layer problem in analogy to the ssy case in elastic-plastic materials
(Rice, 1968). The elastic far field is prescribed in terms of displacements on a
large circle around the crack tip. The radius of the boundary layer circle has been
chosen arbitrarily as r,=5mm, and the crack-tip element size as .0192mm. (The fi-
nite element grid consists here of 8 equal angular sectors in the range o<0<m, and
14 circles centered at the crack tip, and spaced in such a manner that the element
shapes are approximately quadratic except for the triangular crack-tip elements).
The computation starts from the elastic stress distribution at t=o. The stress in-
tensity factor prescribed on the boundary circle is reproduced in the near-tip re-
gion to within .5 per cent accuracy for t=o. The boundary layer computation is stop-
ped when the stress on the boundary layer circle deviates from its linear elastic

value by 10 to 15 per cent due to the development of considerable creep strain
near the crack tip.
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Fig. 1. Creep zone shapes in ssy in plane strain at t = .7
61., 120., 200.107% h; in plane stress at t = 1.3
10505 15y 228504077 hi

Following Riedel (1978), and Riedel and Rice (1979), the creep zone boundary is cal-
culated from the resulting stress and strain fields by equating the equivalent

creep strain to the equivalent elastic strain. Inside the creep zone, creep strain
dominates, outside elastic strain prevails. Fig. 1 shows the development of the
creep zone for various time steps. After a short period of irregular initial growth
not shown here, which is due to unavoidable discretization errors, a self-similar

. . 2/ (n—
shape develops and the creep zone grows according to the time law Tor «t-/(n 0/

(Fig. 2). This is in accordance with the rigorous analytical conclusions of Riedel
and Rice (1979). The shape of the creep zone, however, differs slightly from the
shape calculated by Riedel and Rice (1979) using approximate methods. For plane
strain, for example, the maximum extent of the creep zone, r??x, occurs here at
6~72° compared to 6x~100° according to the analytical approximation. The absolute

numerical value of r@aX differs by some 12 per cent from the approximate analytical
result (Fig. 2).

Now the numerically calculated near-tip field is compared with the analytically
determined HRR-field, eq. (1), with the stress amplitude for ssy according to

eq. (2). Fig. 3 shows the angular dependence of the stress component g, for vari-
ous time steps calculated on a circle around the crack tip with radius r=.0092 rg
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% Fig. 2. Growth of creep zone in plane
strain for CT-specimen. Dashed

; line: slope of the numerical
boundary layer computation (ssy).
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(§econd ring of elements). It is apparent that the initial elastic stress distribu-
tion develops into an HRR-type distribution, when the creep zone has grown beyond

the considered ring. Also the time-dependence, A Kt*1/(n+1)’ is reproduced well by

the finite element method, and so is the radial dependence omr_1/(n+1) if the con-
sidered points lie within the creep zone. The analytical result for A, eq. (2),
contains an unknown numerical factor, Ops, whose value has been estimated assuming
path-independence of the J-integral (Riedel and Rice, 1979). The best fit of the nu-
merical result for the equivalent stress to the HRR-field yields un=.96 for plane
strain and 0,=1.05 for plane stress. This compares well with the approximate analy-
tical results (a,=.94% for plane strain, and @,=1.02 for plane stress)

ANALYSIS OF THE CT-SPECIMEN

The CT-specimen is modelled using 126 isoparametric elements compared to 112 ele-
ments in the boundary layer problem described in the preceding section. The linear
elastic stress intensity factor calculated with this grid at t=o deviates from the
value given by Srawley (1976) by less than 1 per cent.
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Fig. 3. Angular stress dependence in plane strain for various times.
Dashed line: result of Riedel and Rice (1979).
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In the following, the results are presented with the time normalized by the transi-
tion time t,. For the CT-specimen considered in the present paper, the CH-integral
(which is entirely analogous to the J-integral) has the value ¢*=134 N/(meh) for
plane strain according to the tabulation of Shih and Kumar (1979). Then from eq. (
the transition time follows as £,=30 h. For plane stress, no Ck-values are given in
the literature for the CT-specimen. The long—time—solution of the present study
yields c#%=600 N/(meh) and hence +y=T:4 h.

plane
strain

plane
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Fig. L. Extensive creep in the CT-specimen. Creep zones in plane strain for
£ = 2.8, b.1, bk, 5.9,9.1, 12.8+t, ; in plane stress for © = 2.55
3.8, 6.8, 9.1, 13.0°%1.

Tig. b4 shows the development of the creep zone in the CT-specimen. For very short
times (t 55'1()'u t, in plane strain), the self-similar shape is observed. Of course,
it is less accurately calculated here than in the poundary layer approach since the
near-tip region contains less elements. For times 5.107" <t/t,<1, not shown in

Fig. 4, the maximum extent of the creep zone is shifted to larger angles, 9~95°, as
a consequence of the T-stress term (Larsson and Carlsson, 197%). For times greater
than t1 the growth rate of the creep zone becomes faster than predicted by the ssy
calculation. This pehavior is shown in Fig. 2. At t=5.9°t, for plane strain and
=13 + t, for plane stress the creep zone has spread across the whole ligament.

In Fig. 5, the time-dependence of the HRR-stress amplitude, A, is plotted, where A
is evaluated on the boundary between the second and third ring of elements (r= .46 mm)

based on the best fit of the equivalent stress to the HRR-field. The analytically
calculated short— and long-time limits (egs. 2, 3) are also plotted. For long times,
the stress amplitude attains a time-independent value that deviates by less than

2 per cent from the value calculated from edq. (3). The C*-line integral turns out to
be approximately path-independent at the longest times considered although there
are still portions of the specimen where elastic strains cannot be neglected. The
average value of c* calculated along all paths lying entirely within the creep zone
is 137 N/(meh) for plane strain which agrees with the result of Shih and Kumar

(1979), within 3 per cent.

Fig. 5 also shows the load-line displacement, A, as a function of the time. The
particular form of the time scale, © (n=1), has been chosen so in order to draw
i with the A-vs.-load curve in elastic-plastic frac—

the attention to the similarity
ture mechanics. From the general form of the stress field, eaq. (7), it follows

that
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where A _ i i i i

e ;in22§o;ns;antaneous el§st?c displacement, and f is an (unknown) dimen-—

zlenites Suoed Séctiom e%. (8) it is clear that £1/(™71) enters in the same way

el trans92.s ress, Oy, which is proportional to the load. Fig. 5 shows

Sl ition tlme.tl, the load-line displacement grows by 30
instantaneous elastic value, but increases rapidly thereafter -

DISCUSSION

The similari i
i tglzy ]?ft;he creep zone with the plastic zone in elastic-plastic materials
a meChig.y e experience ga?hgred in time-independent fracture mechanics to
e e 1Zi)gn§?§/gr§§p conditions. In particular, we consider the ASTM-cri-
o ZO;e sizé it/i.g néczeze. I: o?der to make the creep zone size equal to
s i i

1.6[ (e 1)EBL T/ (B71) in ssy subsiziut? 1dzg?lfy it B s i

. 4 ing this expr i i i
terion shows that the ASTM-limit 1 L et Riioiss i el
b i imit is reached after 1.8 h for the CT-specimen consi-—
S i ; ernately, the analogy to elastic-plastic behavior can be based on

resses i i i
; i near the crack tip. This requires that the hardening exponent, N, i
identified with 1/n, and ¢ with [ (n+1)EBt]~Y/ (™), yith thi bgt' g
Lot el ) i is substitution for o
foi tiZM llmlz.ls Eeached after «28h. According to Fig. 5, the ssy approximatEZn
near-tip stress amplitude in plane strai
r : n is
ce?t %t t?e respeC?lve times t=.2B h, 1.8h, and t =30agcu€ate.go % i i
ol i . ] b, . Considering the uncer-
i, e i rzc zre mechanics testing under creep conditions, each
ars to be tolerable. Therefore it i ;

e 3 $ 0 C is suggested to apply th
lm:il scale yleldlng approximation up to the time t,, and to use the loig—iimeeso-
ution for times t>t;. A more accurate representation of the numerical results

( better than 5 er cent) can be obtaln
) btalined by combinin, the s 1 ==
( D ) o8 hor and lOl’lg time so

c* (14t /t) 1/(n+1)
A:L___i.J for 0O <t <, (9)
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CONCLUSIONS

A finite element study of the time-dependent stress and strain fields at a macros-—
copic, stationary crack in an elastic-nonlinear viscous material has been carried
out. The numerical results are confirmed by previous analytical studies. The con-
clusions are:

(1) The shape of the creep zone in ssy isslightly different from the shape cal-
culated previously using approximate analytical methods. The conjecture of Riedel
and Rice (1979) that the J-integral be approximately path-independent in ssy is
confirmed within the accuracy of the numerical calculation.

(2) There is a close, although not rigorous, analogy between the development
of the creep zone and the plastic zone in elastic-plastic fracture mechanics if the
yield stress is identified with the quantity (EBt)~! n-!) times a numerical fac-
tor.

(3) Dimensional considerations suggest to plot the load-line displacement ina
particular way versus time. The A/Agj-vs.-opt!/(871)-curve resembles the A/Ag1-vs.—
load—-curve in elastic-plastic fracture mechanics.

(4) The practical meaning of the transition time t,, somewhat arbitrarily de-
fined in previous papers, is corroborated. After the transition time, the effect
of the growing creep zone is felt at the load pins in terms of load-line displace-
ment to an extent exceeding 30 per cent of the instantaneous elastic displacement.

(5) The near-tip stress fields can be represented to a good degree of accuracy
in the whole time-range by modifying the C¥-integral in the long time solution as
c¥e (14t /t), eq. (9).
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