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ABSTRACT

The paper reports on two stress intensity factor calculation methods for three
dimensional crack configurations. They have been used in the analysis of the

same problems : surface cracks in plates and cylinders, corner crack in a nozzle.
The results are compared.

KEYWORDS

Stress intensity factor, calculation method, finite element, boundary integral
equation, crack, cylinder, plate, nozzle.

INTRODUCTION

The paper reports on linear elastic fracture mechanics analysis. The work was
performed by two companies mainly in a joint R. and D. program. They have used
two independent methods. Many crack problems were solved twice. The methods
are presented with some details. A lot of previously published results are
analysed and are compared.

FIRST METHOD

The first method is based upon three-dimensional finite element (F.E.) calculation
and the macroelement technique developed by (Mall, 1979). It consists of dividing
the flawed three-dimensional structure into two or more substructures and modeling
the region containing the flaw by one or more macroelement substructures. The

solution process begins by obtaining a condensed stiffness matrix for each of the
substructures followed by the global

displacement solution. The mode I
crack-tip stress intensity factors
(8.I.F.), Ky,are then determined
from the displacement solution
using Parks stiffness derivative
method (Parks, 1974).

The macroelement is built out of
45 microelements of which 37 are
blended bricks and 8 are wedge
elements (Fig. 1.). The details
of these microelements are con- (a) ¥5 d.o.f. WEDGE (b) VARIABLE d.o.f. BLENDED BRICK
tained in (Hall, 1979) and it Fig. 1
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suffices to know that the wedges
have 45 degress of freedom(DOF)
and the D.0.F. of blended bricks
can be varied subject to minor
restrictions specified in(Hall, o~
79).

CRACK FRONT

The undeformed macroelement shown
in Fig. 2 contains a built-in quar-
ter-elliptical cracke. The region
surrounding the crack tip is
modeled by a channel of 28 blended
bricks enabling the analyst to vary
the density of nodes to achieve a
desired combination of accuracy

and cost. The total D.0.F. corres- h
ponding to the choice of minimum
density is 1656. Fig. 2

The principal characteristics of the macroelement are the following : it is com-
patible with the 20-nodes isoparametric element. It has the option to vary crack
tip region nodal density. It is parametrically defined so as to allow curved
faces. It permits a wide variety of crack surface loadings (any combination of

a bivariable cubic polynomial) and it significantly reduces the man-time needed
to formulate the finite element model.

The first verification of this method was made with reference to a plate contai-
ning a semielliptical surface flaw of aspect ratio 5, fractional through-wall
depth 0.6 and subjected to remote uniform tension loading. It has been shown
that the K values obtained by macroelement technique agreed with those of (Smith,
1973) and of (Raju, 1979) within 8 and 3 percent respectively.

SECOND METHOD

The second method was set up and assessed by solving some problems, the solution
of which is known in a closed form. The results were compared to the exact solu-
tion. A few procedures were tested and a simple, accurate and reliable procedure
was chosen ; the accuracy of the results has been checked.

This method consists of an elastic analysis of the cracked body by using the
boundary integral equation method and the the "Equations Integrales Tridimension-
elles E.I.T.D." program (Lachat, 1975) ; which was written by Centre Technique
des Industries Mecaniques, C.E.T.I.M. (France). The outer surface of the body is
meshed with 6 and 8 nodes isoparametric elements and quarter points elements

in the vicinity of the crack tip (Fig. 3). A typical mesh in the plane of the
crack is shown on Fig. 4 .

The S.I.F. are derived by using displacement extrapolation procedures, which
consistsof finding the limit value of y=Cu/vp ,when p tends to O, where u is

the crack opening at a distance p to the crack tip, and C depends on the materials
When calculating the S.I.F. at the point A (Fig. 3), the values of y = Cu /Vp

at the point B, C, D, F etc ... can a priori be used. The comparison between
numerical and analytical results has demonstrated that the most significant

values of y = Cu/Yp are obtained at the points C, D and E (Fig. 3). We decided

to use two different procedures.
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The first one consists of considering the straight line defined by the three
points C', D', E' | and by a least square fitting ; the second one considers
the parabola y = dp? + ep * f defined by the three points. The intersection
of the straight line or of the parabola with the y axis gives the K value. To
calculate the K value at the point F (Fig. 3) the first procedure can be used

by considering the straight line corresponding to the points G and H. The

two procedures give results whose accuracy is usually similar. The main interest
of using the two procedures is to compare the results and to verify that the
difference is less than 1 or 2 %.

The procedures were tested by calculating K values along elliptical cracks

in infinite solids aspect ratios 1, 1/3, 1/10 . The cracks were subjected

to pressures 0 = x 1 y J). The comparison, between the calculated value of K
denominated K comp. and the theoretical value Kt showed that ( K¢ Kcomp)/Kg

at the point A (Fig. 3) depends mostly on ( 0p - dc )/ oa as shown on the

fige 5 : op and oc are the values of the pressure applied on the crack

at the point A and C respectively (Fig. 3).

The method and procedure were validated by calculating the S.I.F. along a

penny shaped crack in an infinite solid subjected to stress x°, ‘x\, XT lx3l,
x4 . These calculations (Héliot, 1979 b) evidenced what mesh refinement was
necessary. Similar calculations were performed on embedded elliptical cracks
(Héliot, 1980).

The B.I.E. method and the above procedures can be used for any cracked body,

it is simple, accurate and not very costly (100 to 200 man hours and 100 to

800 seconds CPU of CDC 7600 computer ) Alternative procedures have been used
with B.I.E. method ; the stress extrapolation and the energy release rate pro-
cedure ; the first one is not accurate, the second is more accurate than the
displacement extrapolation procedure but its use is more difficult and more
costly.

S.I.F. SOLUTIONS FOR SURFACE - CRACKED PLATE ; BATELLE BENCHMARK
PROBLEM N°1

S.I.F. solutions were obtained for semi-elliptical cracks in a plate as defined
in(Hulbert, 1977). The aspect ratio was a/c = 0.5. The crack depth, a, was 25
and 75 percent of the thickness t. The two methods were used.

The crack was subjected to a pressure : 0 = 0p + 0, y/t (19
where y is through the thickness coordinate with the origin on the side of

the plate containing the crack mouth (Fig. 6).

The resulting S.I.F. can be expressed by :

2
K (¢) = /TLS_ Ecosz 6 + 2—2 sin? q [00 hy (4) + %01 n, (W} )

2
Q = El(kq ; k =1 - (a/c)2 ; E (k) is the complete elliptic integral of the
second kind: The value of E (k) is 1.211, 1.114, 1.016 when a/c is 0.5, 1/3
and O-1l respectively.

hy (¢) and h1(¢) are the calculated influence functions

The first method was used with a 1656 D,0.F. macroelement. The length and width
of the plate was 1.524 and 0.762 respectively. The thickness of the plate was
0.1524 and 0.0508. The second method used similar dimensions but one more case
a/t = 0.50 was solved. The results (Mc Gowan, 1977; Héliot, 1979 a) are compared

on the Fig. 6 and 7. The difference between the corresponding curves is less than
8%.
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A recent report issued by the Society for Experimental Stress Analysis (Mc Gowan,
1980) compared these solutions to others and concluded that they were valid.
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S.I.F. SOLUTIONS FOR SEMI-ELLIPTICAL SURFACE CRACK IN A CYLINDER

S.I.F. solutions were obtained by the macroelement technique for semi-elliptical
surface flaws in the longitudinal cross-section of a cylinder of inside radius
R; to thickness t ratio of 10 (Mc Gowan, 1979). Let 2c and 2a be the major and
minor axes of the flaw, respectively and let a represent the depth of the semi-
elliptical flaw. Three crack depths of 25,50 and 80 percent of the cylinder wall
were studied (Mc Gowan, 1979). The aspect ratio defined by c/a was 3.

The finite element model containing the macroelement substructure is shown in
Fig. 8. Only a portion of the cylinder was modeled taking advantage of the
symmetry condition and Saint-Venant's principle. The inside radius and thickness
of the cylinder were assumed to be 1.651 m and 0.165 m., respectively. The axial
length and circumferential angle of the portion of the cylinder modeled were,
respectively, 1.753 m and 45 degress for the 25 and 50 percent cases. The res-
pective values for the 80 percent case were 2.438 m and 60 degrees. The macroe-
lement degrees of freedom for all cases were 1.656. For the 80 percent case,

the influence of the circumferential angle was studied by increasing the angle
to 90 degrees and the effect on the result was determined to be less than 2
percente.

CRACK TIP —=
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Fig. 8

The same problems were solved by using the second method (Héliot, 1979 b). But
the axial length and circumferential angle of the cylinder modeled were respecti-
vely 8 t, 12 t, 16 t and 60°, 80°, 180°. Three similar problems were also solved
with aspect ratio c/a = 10 ; the axial length was always 40 t and the circumferen-
tial angle 180°.

The pressure applied on the crackface is also given by equation(l) and the
S.I.F. by (2). The results of the two methods are compared on the figurfs 9,10
and 11. The difference between the corresponding curves is less than 9 %.
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S.I.F. SOLUTIONS FOR A CORNER CRACKED HOLE IN A PLATE, BENCHMARK PROBLEM N°2.

The macroelement technique was applied to one of the corner cracked hole
Benchmark problems (Palusamy, 1979). The crack was assumed to be quarter-
circular of radius a in the corner of a hole of radius R in a plate of height
2H width 2W and thickness t. The dimensional values a,R,H,W and t were chosen
to be 12.5 mm. 25 mm., 315 mm., 187,5 mm. and 25 mm., respectively. The value
of a/R as well as a/t for this geometry is 0.5.

Both remote and crack surface loadings were considered. The remote loading
consisted of a uniform temsion, 9, , at the edge of the plate in a direction
normal to the plane of the crack. The crack surface loading was represented by

OS9G x/t (3)

Where 0g5g and OJjp are arbitrary stresses and x and y are coordinates rotated
through 45 degree with respect to the plate surface. See Fig. 12.

The S.I.F. for the remote tension loading is given by
2
K =~ o0, /ma hy (8) (&)

And the S.I.F. for the crack surface loading is given by

2 a
K == [o49 hgg (8) + ¢ 0y hyy ()] (5)
The same calculation was performed also by using the B.I.E. method. The results
are compared on the Fig. 13. The difference between the corresponding curves

is less than 6 percent except at the point 8 = 90° where it is 12 percent.

The work of the authors is presently continued by solving problems of corner
cracks in nozzles.
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CONCLUSION

Many ?—D L.E.F.M. analysis results were presented and most of them were obtained
by using two independent methods. The agreement between the results is good,

they can be considered as reliable, and they are now used in engineering applica-
tions.

ACKNOWLEDGEMENTS
These results were obtained under cooperative research programs between
Westinghouse, Framatome, Commissariat & 1'Energie Atomique (CEA) and Electricité
de France (EDF), except for the a/c = 0.1 semi-elliptical cracks, which were cal-
culated under a cooperative program between CEA/DSN and Framatome.

The author of the macroelement technique acknowledges the contribution made
by Dr. M. Raymund and Mr. J.F. Petschein the computation of numerical results

the author of the B.I.E. work acknowledges the contribution made by
Mr. Flamand and Mr. Large.

5

REFERENCES

Hall, GC.A., Raymund, M. and Palusamy S. (1979) Int. J. of Fract 5
g 231:245. y y of Fracture, 15,1979,

Héliot, J., Labbens, R.C. Pellissier-Tanon, A. (1979 a) Tnt. J. of
Fracture, 15, (1979), pp. 197-202.
Héliot, J., Labbens, R.C.,Pellissier-Tanon A. (1979 b) ASTM STP 677 pp-.
341-364.
Heli?tf J., Labbens, R., Pellissier-Tanon, A. (1980) A.S.M.E. Pressure Vessel and
Piping Conference, San Francisco, Aug 12-15,1980.
Hulbert, L.E. (1977). Int J. of Fracture, 13 pp.87-91-1977.
Lachat, J.C. and Watson, J.0. (1975). In § i
.0. . ymposium on Boundary Integral Equation
Method, A.S.M.E. (1975) pp. 85-100. s §
M?. Gowan J. J. and Raymund M. (1978), WCAP-9318 Westinghouse Electric Corpora-
tion, Pittsburgh Pa. April 1978.
Mc. Gowan J. J. and Raymund M. (1979). ASTM STP 677., pp. 365-380.
Mc. Gowan J. J. (1980). A critical evaluation of numerical solutions to the
"Benckmark' surface flaw problem. Editor SESA, PO. Box 277 Saugatuck
Station Westport, Connecticut 06880.
Memoires Techniques du Cetim n°® 25, CETIM, 52 av Felix L 0
pive 5 5 enue Felix Louat, 60304 SENLIS
Palusamy S.S. and Raymund. M. (1979). XIII th National Symposium on Fracture
Mechanics, ASTM, Philadelphia June 1979.
Pa?ks, D.M. (1974). Int. J. of Fracture, 10 pp. 487-502. ( 1974).
Raju I.S. and Newman J.C. (1979). Journal of Engineering Fracture Mechanics
V.4, 1979, pp. 817-829. ’
Smith, F.W. and Sorensen, D.R. (1976). Int J. of Fracture, V12,1979,

pp. 47-57 Also see : Colorado State Univ. Tech. report 4. NASA
NGL-06-002-063, 1973. 2 ’ grant



