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ABSTRACT

The general equations governing plane strain crack growth in linear viscoelastic
solids are derivea using tne crack opening aisplacement and energy balance
f'racture criteria. Account is taken of time—depenaent but uniform craze stresses
ana it is assumed that small scale crazing conaitions prevail. It is shown that
the crack opening displacement and energy balance fracture criteria lead to
diff'erent crack growth laws when non—steady crack propagation is taking place.
The conaitions whicn allow the steady state growth laws to be used in non—steaay
situations are aiscussed.
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INTRODUCTION

Knauss (1974) has shown that, when a crack propagates at constant velocity
through a linear viscoelastic medium having a craze stress that is uniform ana
time-indepenaent, then the energy balance and crack opening displacement (COD)
fracture criteria leaa to the same equation governing crack growth. The
author (197Y) has derived the same result for a central crack in a large plate
subjected to a uniform and time-independent applied stress provided that
conditions of small scale crazing prevail. For such a geometry the crack tip
velocity is not constant. It has been suggested that the craze stress is
time-dependent, being a function either of the bulk viscoelastic properties of
the material (Marshall, Coutts ana williams, 19Y74) or of the local rate of
deformation (wWnuk ana Knauss, 1970; Knauss, 1974) which must be a function of
crack tip velocity. The objective of tnis paper is to examine the etfect of a
time-dependent craze stress on the crack growth equations derived from both the
COD and energy balance fracture criteria.

DEFORMATION ASSOCIATED WITH THE CRAZE

Consider a crack (without a craze zone) having length c(t) at time t in a
fracture specimen, made of a linear viscoelastic material, wnich is subjectea at
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time t=0 to a specified load history rather than a specified aeflection. It 1is
well known for plane stress or strain conaitions that tne resulting stress
distribution corresponds precisely to the stress field that would have resulted
it the fracture specimen nad been made of a linear elastic material. The
singularity of the stress field at the crack tip in tne fracture specimen is
characterized by the stress intensity tactor K(t) which may be time-dependent.
In oraer that finite stresses result at the crack tip some real viscoelastic
materials torm a craze zone ahead of the crack. AS shown in Fig. 1 the craze
zone is modelled as a very thin strip or time—aepenaent length R(t) across which
the normal aisplacement component 1is discontinuous.

CRAZE ZONE
X2

- R(t) -
| 1
| !
| 0497 = O¢ (t) I

|

x4 =c(t) + R(t)

Fig. 1. Schematic diagram of' a crack and its craze zone.

with respect to the Cartesian co-ordinates x1 ana X, shown in Kig. 1 the
distribution of the displacement discontinuity is aenoted by Auz(x1,c). The
craze zone is capable of supporting a stress and it is assumea, for reasons of
mathematical tractability, that tne stress component 0'22 has the time -
dependent value o©_(t) at every point in the craze zone c(t) £ X, < e(t)+R(t)
wnich is present at time t. Having specified a value of the craze stress at

time t the corresponding length R(t) or the craze zone is obtained by

requiring that the stresses are bounded at the point x1 = c(t)+R(t), X, = 0. As

for the Dugdale (1960) model of plasticity it can be shown that

R(E) =T K2(8) / L8aa(e)} )

provided that R(t) << c(t) so that small scale crazing conditions prevail. Such
conditions will be assumed at all times for the remainder of this paper.

For plane strain conaitions the distribution of the displacement discontinuity
in the craze zone has the form (McCartney, 1979, eq.(2))

2Q(x1,1:)

e < e(t)+R(t) , (2)

aT , c(t) £x

t
Auz(x1,t) = 4TTS k(t-T) 1
0
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2 o (t)R(t)
L SiEg 1 2 14 2
where 0(x1,t) = i {)\* 2(1' X)in (1_)\ )} 5 (3)
and where ,\2 =1 - (xymelt)) 7/ R(E) . ()

Thg tunction k(t) depenas upon the deviatoric and hydrostatic creep functions
whicn characterize the isotropic viscoelastic properties of the bulk material
(see McCartney, 1978). For an elastic material ana plane strain conditions
k(t) = (1-V#*)/E where E is Young’s modulus and » is Poisson’s ratio. The
F‘elations (1-4) can be applied to any fracture specimen for which the s.r.r'ess
intensity factor is known provided that small scale crazing conditions prevail.

CRACK GROWTH LAW DERIVED FROM THE COD FRACTURE CRITERION
The COD fracture criterion asserts that crack growth takes place such that the

cr'acK. tip COD always has a fixead value 5 . Thus the relation (2) asserts that
the tollowing equation must be satisfied whenever crack growth takes place:

t
it 20(e(t), T) b
4Trgx(t T) s dat = & . (5)
0

On integrating by parts and on making use of the relation (3) it can be shown
that the crack growth equation (5) may be written in the form

t
—& S o (T)R(T)
bt MO LR k(t=T) 1 2 1+
it +S { B el LT i
8Kk(0) o (£)R(t) ) FiRL e 1—u) o, (t) R(t) Gl oo
where |J2 =1~ (c(t) —c(T)) / R(TC) . (7)

Having spegit‘ied the function &.(t) and the time-dependence of tne applied load
tfhe equation (6) determines the dependence of the crack 1length on time
i.e. c(t) is the unknown function of the equation. Assuming tna’t
& > 8k(0) C(0)R(0)/T the equation cannot be satistied until the applied load
has acted for an interval of time which is sufficient for the crack tip COD to

increase to the value & . An incubation period must therefore lapse before
crack growth takes place.

Tne history-dependent nature of the crack growth equation (6) means that the
incubation period will aft'ect the subsequent crack growth. However the effect is
e%(pecr,ed to diminish to negligible proportions when the crack has propagated a
glstance wnicnh is equivalent to several craze zone lengths. It is assumed that
incubation effects are negligible and that

(1) c‘c('c)R(-c)z c;(t)R(t) "

te <. T Lt (8)

(ii) (e(t) = e(T)) /7 R(T) =&(t)(t-=w) / R(t) ,

where c(t) = c(t*)+R(t#*), so that t-t* is the time taken for the crack tip to

r;ove a aistance R(t*). The crack growth equation (6) may then be written in the
orm
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1
o (t)é y : 2
bk S . () ( kU= e () (, U
{ s = Kﬂc)} s(e) = TELE) (leliimy (s {2u'(1vu2)l“(1t )}udu ,
k(0) 8of(t) J k(o) b -
where oc(t) = TK(t) / {802(6)&(E)} . (10)

The approximations (8) will be aiscussed later but it should be noted that when
T(t) = O., a constant, and steady state conditions prevail then the crack
growth equation (9) is consistent with previous vresults (Kostrov and
Nikitin, 1970; Knauss, 1974; Rice, 1978; McCartney, 1979). The equation (9) is
capable of further reduction when the creep function k(t) is specitiea (see
McCartney (1979) for details).

CRACK GROWTH LAw DERIVED FROM ENERGY BALANCE CONSIDERATIONS

The energy balance tracture criterion (see for example Wnuk, 1971; Knauss, 1974;
McCartney, 197Y) may be expressed in the form

c(t)+R(t) aAuz(x‘l’t)

crc(t) T— dx, = 2Me(e) , (11)
c(t)

where [7 is the fracture energy and where it has been assumed that the craze
stress is uniform in the craze zone but time-dependent. By making use ot the
relation (2) the crack growth equation (11) can be expressed in the torm (see
McCartney, 1979 eq.(7))

ce(t)+R(t) t c(T)+R(T
rvé i N ’a()(x1,t) . (- T g gn(xw-m & &
2wk(0) o (t) ot 1 k(0) 2T 1 d
¢ e(t) t* e(t)

which is valid for times t such that c(t) > c(0)+R(VU) so that t* > 0. For times
t such that c(t) < c(0)+R(0) the limit t* of the T integration must be
replaced by zero. On integrating by parts the equation may be written

c(t)+R(t) c(t)+R(t)
Ca(e) _ a0(x,,t) .+ KO
2mk(0) o, (t) - ot 17 k()

e(t) e(t)

D(x1,t)dx1

Ju c(T)+R(T)
k(t=T 5
+ S* ) { (l(x1,'t)dx1}01: . (12)
c(t)

where use has been made of the fact that (l(c(T)+R(¥T),T) = V. Now it can be
shown that

e(t)+R(t) A
(xy,t)ax, = —L%)— , (13)
e 96 0 (¢)
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c(t)+R(t)

a(l(x1,t) 4

- =_c1{ k() §+ K2(t)e(t)

(14)
dt LR ybo’i(t) 4T o (t)

c(t)

c(T)+R(T) 4
-E - -
a(x,,Dax, = —KCE) f3-6p+3(1-p2)21n }—*‘i)}, (15)
-
S 3840'2(1'-)

where p is defined by (7). Thus the crack growtn equation (12) may be written

fel . sz} R _q{x‘*m LT ko)
ity 2y UE o-z(t) 240“2@) Koy

t
™ X uy f i
+ —o(t) SMK—&)— 10p3-6ur301-09%n () L aT . (10)
96 ¢ . k(0) 0'3(‘C) 1-p
t c

In order to proceed analytically it is now assumed thnat

3

[¢]

w el =gt
t* < T £ ¢t (17)
(11) (e(t)=e()) / R(T) 2= &(t)(t-T) / &(t)

4

in whicn case the crack growth equation (16) may be approximated as follows

eIl —Kz(t)}é(t) s ——“-{ o)), Te'e) ko)
k(0) gl Sl e, e ey 00

1
_“_4 ) -2 "
+ ——5’§Ll— xX(t) S Kiij_ﬂ_lJ!l&)i’{10p3—6p+3(1-p2)£1n liu) } pap ,

2 1-p
hgo () J k(0)

wnere o((t) is det'inea by (10). On integrating by parts the resulting crack
growth equation has the approximate torm

5P To,(t) 4
———;’(0) L Kz(t)}é(t) = —= —d:{ K3(")}
24 o (t)
c
y L 2
| e 4
LTS ét) S k(11-p%} (t)){va(1'p2) e :_*_rg)} a5 (30
CC o VR k(0) ¥

which can be further reduced when the tunction k(t) is specitied (see McCartney,
(1979) tor details). A comparison of the growth laws (9) and (18) shows that
they are of the same form apart from an extra term on the R.H.S. of (18).
Furthermore the CUD equation (9) predicts that the value of K at instability
(¢ »0°) is time-dependent whereas the energy equation (18) leads to a
time-independent value provided that & and [™ are constants.
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DISCUSSION

The COD and energy balance fracture criteria lead respectively to the integral
equations (6) anda (16) which assume only that small scale crazing conditions
prevail. For constant craze stresses O (t) = O, and specimens loaded so that
the craze length has the constant length R during crack growth, the equations
(6) ana (16) assert that the crack propagates at a constant velocity ¢&
satistying the following equation (which is exact for small scale crazing
conditions when using the energy balance fracture criterion)
1

o §
{ [} - K2 s
k(0) } S x(o)

where o = R/¢& = TI'KJ'/ (50“‘_6), and where it has been assumed that 2= 0‘;_5 . As
shown by Knauss (1974) and more explicitly by McCartney (1979) the COD and
energy balance fracture criteria can lead to the same equation governing crack
growth. It should be noted that the steady state crack growth egquation (19)
corresponds exactly to the relation aerived by Kostrov and Nikitin (1970) using
the COD fracture criterion.

{ D= (Il 36 %ﬁ)} pap (19)

For non-steady conditions the only result which is exact tor small scale crazing
is obtainea from the energy balance equation (16) when the creep tunction k(t)
has the linear form k(t) = k(0) + k(0)t . The resulting crack growth law may be
written in the torm

o— (t) .
w2l Kz(t)} By _K_L)_ Ky 3 Fe' 1 k) (20)

k(0) Gdc(t) K(t) ~ 4 o"c(t) 4 k(o) :

which asserts that a craze stress decreasing with time has the effect of
increasing the crack tip velocity. For more general creep functions k(t)
approximations of the form (8) or (17) must be made in which case the COD and
energy balance fracture criteria lead to the equations (9) ana (18)
respectively. Consider first of all the approximation (8ii) which is identical
to (17ii). It is very useful to write

(e(t) -~ e(T)) 7/ R(T) = &(t)(t-T){1 + €(T,t)} / R(E) , (21)

so that the approximations (8ii) and (17ii) are valid when € (T,t) << 1 and
é¢(T) is boundea for all T such thnat t*¥ < T < t. For most practical
applications ¢(t) > 0 and R(t) > 0 for all times t > 0. It then follows that
{e(t)-c(T)4/(t-T) < &(t) ana R(T) > R(t*) for t* < T < t in which case (21)
asserts that

c(t)-e(®) R(t) 1 R(t)
t

D €(T,t) | = - T k() 506) < R(t*)

Pl . S e

It is theretore deduced that the approximations (8ii) and (17ii) are valid
whenever the crack tip velocity is bounded and

{R(t) = R(t*)} / R(t*) << 1. (22)

Thus the approximations are valid when the increase in length R(t)-R(t*) of the

craze zone resulting from the crack growth increment R(t*) is very much less
than the original craze length R(t*). It is clear that if in addition

{c'c(t) = O‘c(t*) } o/ o’c(t*) K1, (23)

then the conditions (8i) and (17i) are also satisfied.
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It is worthwhile comparing the steady state growth law (19) with the more
general equations (9) ana (18) which were derived respectively from the COD and
energy balance fracture criteria. Provided that the conditions (22) and (23) are
satisfied the COD equation (9), valia for non-steady conditions, has precisely
the same form as the steaay state growth law (19). However the energy balance
equation (18), valid for non-steady conditions provided that (22) and (23) are
satisfied, is not of the steady state form (19) because of the presence of the
first term on the R.H.S. of (18). when modelling the creep behaviour of real
materials the quantity k(t) is usually a decreasing function of time and it then
tollows that

1 2
_1_Ko<t X t .
3 k(0 K(O) }”“'

Thus the energy balance equation (18) has the same form as the steady state
crack growth law (19) whenever

{ 2p-(1—p2)1n (%Eﬁ

3
Tl { gfxgz_}  KERG/E() k() o
Ku'(t) dt <,.(33(“ k(0) - k(D)

Consider now the special case oOg(t) = O, a constant, So that the condition
(23) is automatically satisfied. Assuming that K(t) < 0, a characteristic of
most real materials, it follows that the condition (24) may be written

4K/K << k(R/c)/K(O) k(0)/k(0) . (25)

Now the condition (22) will be satisfiea whenever 0 < R(T) << &(T) ftor
t¥ < T £t since

t t
S &(T)AT = o(t) - c(t*) = R(t¥) >> S R(T)aT = R(t) - R(t*) .
t* t*

when ©_(t) is a constant the conaition R << & may be recast in the form

K/K << &/(2R) , (26)

where use has been made of the relation (1). The relevance of the conditions

(25) and (26) when comparing crack growth laws for steady and non-steady

conditions has been discussed recently in the literature (Knauss 1979,1980;

McCartney 1980). It is deduced from the analysis presented in this paper that

(a) the condition (26) proposed by Knauss (1976,1979,1980) is sufficient to
ensure that the COD equation (6), valid for non—-steady conditions, can be
approximated by the steady growth law (19) when applied to non-steady
conditions.

(b) the condition (26) is sufficient for the energy balance equation (16) to be
approximatea by (18) but insufficient for (18) to be approximated by the
steady state growth law (19). The additional condition (25) wmust also be
satisfied, in Keeping with earlier remarks (McCartney 1980).

Consider stress intensity tactors of the form K = Lf(c) where L is the applied
load ana f is some geometry-dependent function of the crack length. When L is
held fixed it follows that the condition (26) may be expressed
R/c << f(e) / {2ef’(e)} which is normally automatically satisfied when small
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scale crazing conditions prevail. Thus tor small scale crazing the condition
(26) is placing a restriction on the rate of increase of the applied load L.

Finally it is worth noting that Schapery (1975) has proposed a localized energy
fracture criterion ot the torm

v BAuz(c(n),‘C)
e = SO"("C) === 4T, elt) 2 c(U)FR(0); (27)
ix © 2T
which reduces to the COD criterion when G¢(T) = O a constant. For

time—dependent craze stresses the relation (27) is the basis for yet anotner
crack growth law which would reduce to the torm (19) for steady conaitions.
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