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ABSTRACT

We describe a method to compute the stress intensity factors at the tip of a crack located on a general shell. This method
permits to calculate stress intensity factors defined out of KIRCHHOFF’s hypothesis by means of finite elements in the for-
mulation of which this hypothesis has been retained. The method is used to solve the problem of the crack located in an
infinite plate subjected to a uniform traction at infinity. It is used afterwards to solve a practical problem and the results are
compared to those abstained in a different way.

INTRODUCTION

Oil industry uses different types of thin shells. Vessels, pipes, offshore constructions are just examples of two-dimensional
structures and it may occur that cracks are detected in some of these shells. They can generally be immediately repaired but
it may occur that production or environmental conditions have the repairing delayed. In this case, it is however necessary to
make sure that, until the crack can be repaired, it will not grow in fatigue to a catastrophic extend. L.E.F.M makes this
prediction possible as soon as the stress intensity factors are known.

Five stress intensity factors have been defined on shells and they have been calculated for some particular geometries and
loadings. On the contrary, the numerical method proposed here is not specific of a geometry and can be used as long as the
region surrounding the crack tip satisfies all the thin shell theory requirements. The whole structure calculation which is
necessary is performed by means of finite elements technics. Now, the most commonly used finite elements are based on
KIRCHHOFF’S hypothesis which hypothesis must be abandonned to define the stress intensity factors. The present
method takes this contradiction into account and makes it possible to compute the stress intensity factors by means of
KIRCHHOFF type elements.

We shall, first, describe the method and we shall apply it, afterwards, to an infinite plate subjected to an uniform traction at
infinity and containing a straight crack. This is just a plane problem but as the results are found to be in good agreement
with the corresponding analytical solution, we shall state that the proposed method may give good results in general two
dimensional problems. So we shall apply the method to calculate the stress intensity factors of a real crack. Their values will
be compared to those obtained in an approximate way by means of some published results.

DESCRIPTION OF THE METHOD
Let us consider a cracked shell. It is always possible to define a set of cartesian coordinates Xq X9 in the plane tangent to the

middle surface of the shell at one of the crack ends. The origin of the coordinates will be located at the crack tip and X1
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will be tangent to the crack. In these local axis, uq and up will denote the in-plane displacement, w the displacement along
the normal, (31 and ﬁ2 the two components of the total rotation of the normal and r and 0 the usual polar coordinates. It has
been shown (1), (2) that, when the displacement and rotation of the crack front are zero, the first term of the development
of the kinematic unknowns was given by :
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vand E are the usual elastic constants. So, the displacements and rotations originating singular stresses are perfectly known
out of the five stress intensity factors Ky Ky Ks*, Ka*, Ka**'

The above relations have been obstained by means of a shell theory rejecting KIRCHHOFF’s hypothesis. In other words, to
perform numerical calculations perfectly consistent with the definition of the stress intensity factors, it is necessary to use
finite elements based on the same shell theory. Now, it is obvious that such elements are not available in most of the codes
and, moreover, that far form the crack tip, the usual elements are satisfactory. So, the idea consists in using the usual
elements out of the elastic singularity and in modeling the singularity behaviour by means of relations (1).
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Let us consider (figure 1) the cracked shell and let us remove, around the crack tip a small surface bounded by a curve C,
the highest dimension of C being such that, at any point of C, the singular solution prevails.

4

(Figure 1)

This shell is submitted to the following loadings :

- The external forces are applied and the nodes located on C are fixed (zero displacements and rotations). The calculated
displacements and rotations are denoted by Vo‘

- Let K; denote one of the five stress intensity factors. The singular displacements or rotations calculted on C with
K.i =1, the other K being zero, are imposed to the points of C. There are five loadings of this type and the corresponding
displacements and rotations are denoted by S_I

- Let R; den‘ote a rigid body displacement or rotation of C. This rigid body movement is applied to C with R; =Tand the
corresponding calculated displacements and rotations are denoted by Tx There are six displacements of this type.

&), K; and R; being the unknown stress intensity factors and rigid body displacement and rotations of C, the displacement
V of any point of Z is given by :
V=Vo+ X KiSi+ I R,

i=1 i=1

In the same way, with evident notations, the displacement of any point inside C is given by :

5 6
V=3 Ksi+ Z RT,
i=1 i=1

S; denotes the displacement calculated by (1)_with K; =1, the other stress intensity factors being zero, and T; denotes a
unit rigid body movement of C. So as, on C, Vo =0, Si = S_iand Ti =T_i, Vand V are equal along this curve so that the
displacement and its tangent derivative i.e. derivative along C are continuous across C. But these continuities do not imply
the continuity of the normal derivative i.e. derivative along the external normal to C in the tangent plane to . Denoting
by a’ the normal derivation operator, we must have,onC :

5 6 i 5 AL 6 s
V=3 Kisy+ X RiTy=Vy'+ X KS'+ ¥ RiTy =V’
i=1 i=1 i=1 i=1
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These relations give :
5 S 6 =
2 K (Si’-Si’) + X R (Ti’—Ti') =V
i=1 i=1

This is a set of linear equations the solution of which are the eleven unknowns R; and K]-.

The calculations described below have been
required normal derivatives. So, outside of C, they have been‘c.a
corresponding d.o f. on three nodes. Moreover, the ;f\bove? equalities must
each node located on C. So, the number of equations is genera

system must be solved in an approximate way ; we have choosen a least square approach.
b

made by means of finite elements technics. These tech.nics do n(')t give the
lculated by derivating a parabolic interpolation of the
be written for each displacement and rotation of
lly much larger than the number of unknowns and the
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Figure 2 - Mesh used to test he method

t

The displacement of
this point is set to zero
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SAMPLE PROBLEM
To test the method, let us solve the problem of the infinite plate submitted to a uniform traction at infinity. The numerical

resolution will be made by means of constant strain triangles and linear strain quadrilaterals. The plate is limited to a rectan-
gle 2bxc the half of which, bxc, is modeled (figure 2). The crack length is equal to 2a and we have :

C
g

a

b
—=3.2

a

Comparing the calculated Ks and Ka to the theoretical value o+/ma'of KS we get :

KS
=1.11
o/na!
K
2 -0.0025

o/md

The components up and up of the computed rigid body displacement of the crack tip can be compared to those, u'1 and
u'y of the point located at the crack tip in the same uncracked plate. We get :

uq uy
— =3.92 — =0.98
u’y u’y
b
The IirRited plate we retained has a—a—ratio of 3.2 which is a poor approximation of infinity. So, the value 1.11 calculated
s
for

. . . u . .
- is an upper bound of the real ratio. In the same way, the ratlou—y% is meaningless due to the fact that the crack

region is less stiff than an uncracked plate. So, it can be concluded from this sample problem that the proposed method is
satisfactory.

REAL PROBLEM

When inspecting the pipe intersection represented on figure 3, a crack was detected. Its length was half of the intersection
and it was immediatly decided to loose the two pipes by sawing the small one as close of the intersection as possible.

|

(Figure 3)
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But, as the main pipe was submitted to an alternated bending moment, it was necessary to make sure that the crack could
not grow in fatigue unto instability until it was possible to repair the crack properly. So, it was necessary to calculate the
stress intensity factors.

The crack being entirely on a geometric singularity, it is not possible to use a shell theory in the computations. However,
the nature of the loading indicates that the crack will become dangerous for the safety of the structure only if it growth
along a director circle i.d. perpendicularly to its ends. In that case, after growing has taken place, the crack enters the
domain of the theory of shells and it becomes possible to apply the present method. So, we have imagined two crack exten-
sions, different in length, and we have modeled the half of the corresponding geometries. The corresponding meshes are
plotted on figure 4.

Figure 4 - Meshes used for finite elements calculations
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(Figure 4-b)
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The external moment was applied to the structure through axial forces concentrated on the nodes located at the two ends
of the cylinder. Although the two problems are identical, they have been solved in two different ways : for the smallest
crack extension, the rigid body displacement parallel to the plane of symetry has not been fixed. The computation, has
given a high value for this displacement and, to test its influence on the accuracy of the least square approach, we have
solved the linear system a second time after having substracted this rigid body displacement from the calculated displace-
ments. It will be noticed that the stress intensity factors have not been significantly modified. As far as the second crack is
concerned, the supports have been choosen so that the rigid body displacement of the structure was zero. The results are

given in table 1.

TABLE 1 :Results of present calculations

Unknown Crack n°1 Crack n® 2
Rigid body displacement Rigid body displacement Rigid body displacement
Included substracted included
K 146.8 147.1 205.0
Kg* - 43 - 4.6 - 64
K, - 09 = 11 1.1
K * 1.6 - 14 - 02
[ - 0.1 0.1 0.1
Uy - 9928 128.5 -0.66
Uy 1933.8 -250.3 0.96
u, 136.4 -325.2 0.30
R, 19104 1710 2710°
Ry -0610 -06104 311073
R, -2910° -05104 13103
Ko K¢*, K, Ky*, K, ** are expressed in kgf/mm2 Vvmm'
Ux,Uy,UZ components of the displacement of the crack tip, are expressed in mm
Rx'Ry'Rz components of the rotation of the crack tip, are expressed in radians.

The results indicate that the stress intensity factor K corresponding to the mode | membrane forces is much larger than any
other. The asymetry of the crack and the reinforcement due to the presence of the remaining part of the small pipe have not
a real influence and the problem is just symetric. In a similar way, it can be noticed that the symetric bending stress
intensity factor KS* is, in both cases, close to 3 % of KS i.d. non significant.

We have compared the results with those obtained in (3). If we just consider the case of a radial crack located in a cylinder
pulled in traction and if we take as the traction stress the highest value of the axial stress on the uncracked cylinder, we

obtain the results given in table 2.

TABLE 2 : Stress intensity factors computed using results given in (3)

K K* |<5+ |K*|
Crack n®1 135.81 -16.56 152.37
Crack n%2 167.46 -39.01 206.47

The maximum symetric stress intensity factor is obtained on one of the two external surfaces of the shell and is equal to
K + | KS* | . The values of this parameter obstained by each method differ by less than 2,4 %. However, the methods do
not give the same results : the values of the membrane stress intensity factor K, differ by 18 % and the ratios KS/KS* are
very different.
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CONCLUSION

We have described a method to calculate stress intensity factors on a general shell. This method uses Kirchhoff type plate

bending finite elements and is simple in use. The results obtained are acceptable but, as any new method, it has still to
be tested on other problems and compared to other methods.
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