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ABSTRACT

The general problem of toroidal shells containing a symmetrically located through
crack is formulated by using Reissner's shell theory. For symmetric loading con-
ditions the problem is reduced to a pair of singular integral equations. The
solution is obtained for positive and negative curvature ratios and the stress
intensity factors are calculated.
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INTRODUCTION

In elastic shells representing such structural components as relatively thin-
walled pressure vessels, storage tanks, and pipes the curvature is known to have a
considerable magnifying effect on the stress intensity factors at the tips of a
through crack which may exist in the shell wall. As in flat plates, mostly
because of mathematical expediency the early studies of crack probiems in shells
were based on the classical shallow shell theory and were confined to cylinders
and spheres containing a meridional crack (see, for example, Erdogan, 1977 for
review and references). However, these classical solutions were known to contain
certain inconsistencies with regard to the asymptotic stress field around the
crack tips which, in flat plates were removed by using Reissner's theory (Knowles
and Wang, 1960). In recent years similar discrepancies between the asymptotic
results given by the classical shell theory and those obtained from the plane
theory of elasticity have also been removed by using a higher order shell theory
which is consistent with the number of independent physical boundary conditions
(see Krenk, 1978; Sih and Hagendorf, 1977; Delale and Erdogan, 1979a, Delale and
Erdogan 1979b, for cylindrical and spherical shells). Again, in all these studies
the shell was assumed to be either cylindrical or spherical. Needless to say,
some of the important applications of the crack problems in shells may be in com-
ponents such as pipe elbows and other toroidal shells in which there are more

than one distinct nonzero curvature. In this paper the general problem of a shell
with two nonzero curvatures having a through crack in one of the principal planes
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of curvatures is considered by using Reissner's theory (Reissner and Wan, 1969).
Specific results are obtained for a pipe elbow or torus with either positive or
| negative curvature ratio. The asymptotic results are shown to be consistent with
| the in-plane elasticity solutions. Using this fact, an expression for the strain
energy release rate in elastic shells is derived.

BASIC FORMULATION

Consider the shallow shell shown in Fig. 1. Let Z = Z(x;, x,) be the equation of
the middle surface. Assume that the curvatures

(T/Rl) = o 322/3X12 N (]/Rz) =l BZZ/BXZZ B (1/R]2) T e 322/3X13X2 (1)
are all nonzero and distinct. Referring to Fig. 1 for notation, to Appendix A

for the normalized quantities, and to (Delale and Erdogan, 1979a) for the deriva-
tion, the governing equations of the shell may be expressed as follows:

by _ g BB pe2 R B B,
N ;2‘(X1 5y2 2A12 3X0Yy + Ay axZ) w=0 , (2)
32 32 32
7w+ 22(1-kv2) (A3 el e e A o) $=0 (3)
KV2p - - w =0 , « l%X-VZQ -0=0 (4,5)
where
B 38 38 98
v(xy) = k(52 + 75% Few » Blepls'gas ok (6,7)

¢ is the stress function, w is the z-component of the displacement vector, gy and
gy are the components of the rotation (of the normal to the middle surface), and
t%e remaining quantities are defined in Appendix A. In this paper we consider
only the perturbation problem in which the crack surface tractions are the only
external Toads acting on the shell. Defining
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and eliminating w, (2) and (3) may be reduced to
vHTHe + (1 - kv2) v§v§¢ =0, (9)

Let the solution of (9) be of the form

©
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-

Substituting (10) into (9) we obtain an 8th order differential equation for g.
Looking for the solution of this differential equation which is of the form eMX
we obtain the following characteristic equation:
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If we now assume that the axes X1 and x, lie in the principal planes of curva-
ture, A5 = 0 and (11) becomes a fourth degree equation in m2. Furthermore,
defining
p=m? - a? (12)
equation (11) becomes
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Let the roots of (11) obtained from (12) and (13) be Mis...,Mg Which are ordered
as
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Then the unknown function g(x,a) given in (10) may be expressed as
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Also, assuming w(x,y) of the form

W = ;—ﬂf S (16)

-

from (2), (10) and (15) we find
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Similarly, assuming the functions @ and v of the form

© ©
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- -0

from (4), (5), (16) and (17) we obtain
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After determining the functions y and @ the components of the rotation vector may
be obtained as
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Let us now assume that x; = 0 is a plane of symmetry with respect to the external
loads as well as the shell geometry. Thus, the stress and moment resultants which
appear in boundary conditions satisfy the following symmetry conditions:

(y) = Ny (xay) 5 Ny B6y) = =N (x0y) 5 Vo (x6y) = =V (-x0y),

Nxx Xy

Mxx(x,y) =M _(-x,y) , Mx

- (x,y) = -Mxy(-x,y) ) (24)

Y

and it is sufficient to consider one half (i.e., x>0) of the shell only. Note
that the stress and moment resultants necessary to express the boundary conditions
on the crack surfaces are given by (Fig. 1).
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By using the solution given above for x>0 we find
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It is seen that the problem is solved once the unknown functions Ris...5Ry, and
A, are determined.

THE INTEGRAL EQUATIONS

The formulation of the perturbation problem given above for x>0 is equivalent to a
tenth order system and satisfies the regularity conditions at x2+y2 = » . Thus,
the formulation contains only five unknown functions Ri,...,Ry, and A; which are
determined from the following boundary conditions (see (24) and Fig. 1):

ny(o,}’) =0 MXY(O,.V) =0, VX(O,y) =105 TSy, iy (31a—c)
o Nex(Xo9) = F ) 5 Iyl < 15 u(30,y) = 0, 1<]y|<e, (32a,b)
xllg MXX(X’.V) = FZ(‘Y)’ [eplt il SX(+0,y) =0, 1I<|y|<= (33a,b)

where F] and F2 are known functions. The three homogeneous conditions (31) may
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be used to eliminate three of the five unknown functions; the mixed boundary con-
ditions (32) and (33) may then give a system of dual integral equations to deter-
mine the remaining two functions. The problem may also be reduced to a system
of singular integral equations in terms of the following new unknown functions
which are the natural complements of the specified crack surface loads F; and F,:
-2 S

Gl(Y) - ay U(+Osy) ) GZ(Y) 3y SX(+O,Y)' (34asb)
Thus, expressing Ry,...,Ry, and A; in terms of G; and G, and substituting into
(32a) and (33a), after some lengthy analysis the integral equations may be
expressed as

1 (I
Pl <
£ 10 AL+ k()16 (0t = 20 By (00, Iyl<, 11,2 (35)

where a;=1, ap=a(1-v2)/ha* and kij are known functions. From (32b), (33b) and
(34) it follows that (35) must be“solved under the following single-valuedness
conditions: 1

G.(t)dt =0, j = 1,2 . (36)
: o
THE SOLUTION AND RESULTS

The solution of (35) is of the following form which may be obtained numerically
in a straightforward manner:

1

G;(y) = gi(y)/(1—y2)§, i=1,2 (37)

After performing an asymptotic analysis the stress intensity factors may be
expressed in terms of gi(+1), (i=1,2). For example, referring to (Delale and
Erdogan, 1979a) for details, for a uniform membrane loading on the crack surface
Ny1(0,x2) = =hop, M11(0,%x,) = 0, we obtain

ky(h/2)-ki(0) -
= —= - — ] s k = S 9 (1) (38)
b - gl( ) bm Om/a_ 4acm 2

where kg and kpp are the membrane and bending components of the Mode I stress
intensity factor ratio ky(x3)/o,/a. Similarly, for the external Toads Njj(0,x,) =
0, M11(0,xp) = -hzcb/6, -a<xp<a, membrane and bending components of the stress
intensity factor ratio k;(x3)/opva may be expressed as

_ B ) ky(h/2)-kq(0) ) Eh
kmb S E 91(1)9 kbb = Ob/a_ - - 4ao_b 92(1) . (39)

Note that the Mode I stress intensity factor is given by

X3

kl(XB) = km+kb(X3), k =k ~0j/a_, kb(Xa) = kaGJ/a— m, J = m,b, (40)

m mj
where kp and kp are the membrane and bending stress intensity factors. Using
these results the strain energy release rate G (per unit crack extension at one
crack tip) may be evaluated as

6= T (K + kb/a). (41)

Table 1. Stress Intensity Factor Ratios, a=10h, v=0.3
B]_ a//th
Ro O 0.25 0.50 0.75 1.0 1.5 2.0
kmm
0.2 1.040 1.216 1.681 2.246 2.854 4,145 5.556
1/3 1.025 1.141 1.471 1.897 2.378 3.434 4.590
0.5 1.018 1.100 1.349 1.686 2.078 2.969 3.965
2 1.005 1.035 1.130 1.277 1.460 11917 2.471
3 1.004 11027 1.101 1.219 1.368 1.740 2.195
5 1.003 1.021 1.078 1.168 1.286 1.577 1.934
Kbm
0.2 0.046 0.134 0.199 0.142 0.038 -0.742 -1.899
153 0.034 0.109 0.188 0.181 0.081 -0.392 -1.221
0.5 0.028 0.092 0.174 0.189 0.132 -0.207 -0.843
2 0.015 0.055 0.123 0.163 0.166 0.062 -0.182
3 0.013 0.050 0.112 0.153 0.161 0.084 -0.104
5 0.011 0.045 0.102 0.142 0.153 0.097 -0.044
Kpb
0.2 0.641 0.615 0.555 0.495 0.441 0.356 0.293
1/3 0.643 0.621 0.566 0.508 0.455 0.368 0.305
0.5 0.644 0.624 0.573 0.516 0.463 0.377 0.313
2 0.645 0.630 0.586 0.532 0.480 0.393 0.331
3 0.645 0.630 0.587 0.535 0.482 0.395 0.334
5 0.645 0.631 0.589 0.536 0.484 0.397 0.336
kmb
0.2 0.011 0.033 0.064 0.086 0.100 0.115 0.122
1/3 0.008 0.026 0.054 0.074 0.089 0.104 0.1
0.5 0.006 0.022 0.047 0.066 0.079 0.095 0.102
2 0.003 0.013 0.030 0.044 0.055 0.067 0.073
3 0.003 0.011 0.027 0.040 0.050 0.061 0.066
5 0.003 0.010 0.024 0.037 0.045 0.054 0.058
Table 2. Stress Intensity Factor Ratios for a Saddle-
Shaped Shell, R{/R, = -0.5, a=10h, v=0.3
a/vhR, 0.1 0.25 0.50 0.75 1.0 145 2.0
kmm 1.014 1.079 1.261 1.480 1.699 2.098 2.455
kbm -0.015 -0.045 -0.066 -0.039 0.025 0.195 0.385
kbb 0.645 0.633 0.594 0.546 0.498 0.414 0.353
kmb -0.003 -0.011 -0.019 -0.020 -0.016 -0.004 0.006

Tables 1 and 2 show some of the calculated results for shells with positive or
negative curvature ratio.
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APPENDIX A. Dimensionless Quantities

X = X1/a , ¥y = xp/a , z = x3/a . CAL )

u=uy/a,Vv=u/a,w=us/a. (A.2)

By = Bua s By, = Bap s+ § = F/(a%Eh) ,

By = B1VE 3 Iy = 022/E Opy = o12/E . (A.3)

Nex = NiL/hE 5 Ny = Nag/hE  Nyoo= Myo/hE (A.4)

M = M1/h2E o My = Mao/h2E , M, = Myp/h2E. (A.5)
= = =5 _E

VX = V;/hB , Vy Vo/hB , B 6 2 eay (A.6)

M= 12(1-v2)a%/h2R2 , A = 12(1-v2)a%/h2R3

"

Mo o= 12(1-v2)a%/h2R2, , A% = 12(1-v2)a?/h? , « = E/BAY . (A.7)

X

Fig. 1 Notation for the cracked shell.
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