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ABSTRACT

Paper describes numerical work, which has been done on a plane crack problem. A
finite element program has been developed for plane stress, plane strain and axi-
symmetric problems, taking into account geometrical and physical nonlinearity. The
frame of reference is a Cartesian resp. cylindrical updated Lagrangian ome. The
tangent stiffness method applied, comprises constitutive equations relating the
Jaumann rate of Cauchy stress to the rate of deformation. The von Mises' yield cri-
terion and the rule of normality has been used. Isotropic and kinematic hardening
of the material can be taken into account. The element is the 4-nodes isoparametric
quadrilateral one. A modified strain increment has been used to prevent unduly con-
straints on the modes of deformation. The incremental tangent stiffness solutions
are corrected by a subincremental integration and a corrective nodal load tech-
nique.

Distribution of true stresses and finite strains at the tip of a plane crack and
crack tip opening displacements are obtained for a cyclically loaded cracked ten-
sion specimen from elastic-ideally plastic material resp. from AISI-304.
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INTRODUCTION

Much attention has been paid to the distribution of stresses and strains around

the tips of cracks in linear elastic and elastic-plastic materials. Only a very
limited number of these studies however comprise the effects of finite deformations
at the crack tip. Rice and Johnson [ 1] studied this effect in a Prandtl slip line
field solution around smoothly blunting cracks. McMeeking [ 2] performed finite
element calculations of cracks taking into account geometrical and physical non-
linearities for power law hardening materials under monotonous loading.

In this contribution finite element results are presented for a cyclically loaded
CTS of elasic-ideally plastic material resp. stainless steel type AISI-304.

FUNDAMENTALS

Several papers have been published about the fundamentals of elastic-plastic
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finite element analysis, taking into account large deformations. No attempt will be
made to give a survey of the field. The reader is therefore referred to the
excellent review of Rice et al. [3]. Just the following remarks are being made.

In problems where one has to take into account geometric and/or material non-—
linearity the solution process is usually a step by step one, where successive
increments of prescribed loads and/or displacements are applied in a proportional
way.

As a basic feature of a geometric nonlinear problem is that the equilibrium
equations must be referred to the deformed geometry, the finite element mesh- fixed
relative to material points- has to convect with the deformatioms.

In the "updated Lagrangian" formulation that has been used, the mesh is updated
during the solution process.

Thus by applying the load in increments one may properly take into account the
spread of plasticity and the change in geometry of the structure.

The equations governing the problem are most conveniently written down in the form
of rate equations related to a current deformed configuration at time t.

The assumption is made that in this configuration all the variables as nodal point
coordinates, stresses, strains and stress history are known. The stresses and pre-
scribed surface forces (neglecting body forces) satisfy the equilibrium conditions
(in the finite element sense) and the displacement field is continuous and satis-
fies prescribed displacements at the boundaries. Bases of the finite element
formulation are the virtual power equation, describing instantaneous static equi-
librium and the material rate of virtual power equation, describing continuing
equilibrium of the quasi-static process of deformation. Both these equations must
be satisfied at any time during the deformation process for velocities restricted
to the set of continuous, piecewise differentiable functions containing the nodal
velocities as parameters.

The virtual power equation neglecting volume forces in the current configuration
and referred to this configuration is
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The summation convention with respect to repeated indices is being used and a com-
ma before an index denotes differentiation with respect to that spatial coordinate.
0i; are the true symmetric Cauchy stresses. The virtual rate of deformation tensor
Gdij is defined by

84y, =g (8vy 5 + 8w, ) )

in which 8v; are components of any compatible field of virtual velocities. T; are
the components of the prescribed surface forces per unit surface. dV and dSp are
volume resp. elements of boundary surface where tractions are prescribed.

The rate of the virtual power equation is derived by taking the material time
derivative (--) of eq. (1), which leads to the following equation

fv ety = Sind g i gices S

= Js (Ti + Tin’k) cSvidsT (3)
T

The assumption is made that the material is homogeneous and isotropic and a linear
relation between stress rates and strain rates is being adopted. As has been shown
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by Nemat-Nasser [4] a linear decomposition of the deformation rate (d,.) into
elastic (di?) and plastic parts (di?) is valid ]

d,. =d.% +4q.%
ij 15.F le (4)

The rate of plastic dilatation (dP ) is zero. In the constitutive equations frame
independent stress rates and deformation rates have to be chosen. This leads to
the following relation between the corotational Jaumann rate of Cauchy stresses
(('Jij)J and the rate of elastic deformations

. J e
@l = G 3

Ciikl is the linear elastic material stiffness tensor for isotropic material. The

relation between the Jaumann rate and the material derivative of Cauchy stresses
is as follows [ 5]
T
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In this equation the tensor mij is the rate of rotation tenmsor being defined by

o= T B (7)
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The yield criterion being adopted is the von Mises' criterion for isotropic
hardening material. The hardening characteristic of the material has been assumed
to be a function of the total plastic work dissipation per unit deformed volume.

At plastic loading the rate of plastic deformation vector has the direction of the
outward normal to the yield surface in stress space (normality rule).

Basing upon the assumptions mentioned above, one can now write eq. (5) for plastic
loading as

J— -
i e 5
Yijkl is the plasticity matrix.

To describe kinematic and combined kinematic and isotropic hardening the fraction
model approach as proposed by Besseling [6] has been applied. A volume-element of
the material is thought to be composed of a conglomerate of subelements (fractions)
with differing elastic limits. Kinematic hardening of the material is obtained
when all fractions behave elastic-ideally plastic. When one or more fractions have
an §1astic—isotropic hardening behaviour the material will show a combined kine-
matic-isotropic hardening effect.
By adjustment of the number of fractions, their yield limits, participation factor
and isotropic work hardening the behaviour of materials exposed to fluctuating or
cyclic loads can be described.
Substitution of eqs.(6,7) in eq. (8) gives after some manipulation
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The tensors cijkl’ c?jkl and Yijkl are all symmetric in the indices i and

j,k and 1,ij an k1.
Substitution of eq. (9) in the time derivative of the virtual power equation
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(eq.(3)) and neglecting the term O , which is allowable when the stress

3133V ;
ij k,kj
divided by the elastic modulus is small compared to unity, the following rate of
power equation is being derived

Mg 0V Ji
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All variables in this equation are referred to the current configuration.
To solve the governing virtual equation now in an approximate way, the body in its
current configuration is discretized in finite elements, which in fact are defined
by the spatial coordinates of the nodes of the initially undeformed mesh, the
position of these nodes having been updated during the solution process.
The discretization of "time'" is being attained by applying incremental steps of
prescribed loads and/or displacements, supposing that during these steps the
position, geometry and stiffness of the elements do not change and so the
structure behaves like a linear ome. All variables are related to the state at the
beginning of the relevant load step. The increments of nodal displacements having
been found by solving the discretized and linearized equations resulting from
eq. (10) now naturally do not correspond with these of the actual structure.
The geometric non-linearities cause a deviation from reality and by supposing
linear behaviour, the stresses in those elements subjected to plastic loading will
drift from the yield surface and must be corrected.
To maintain or bring the state of stress in the integration points of the
elements on the yield surface at plastic loading, a corrective method much alike
the one described by Rice and Tracey [ 7] has been used. The stress increments are
further corrected in an integrative way by dividing the nodal displacement
increments in a number (say m) equal subincrements. The stress increments caused
by the load step are determined now from a series of subincremental stresses,
which are obtained by substituting the subincremental nodal displacements in the
incremental constitutive equations.
All variables in the constitutive equations are related to the configuration just
before the application of the pertinent displacement subincrement, the coordinates
of the nodal points being updated m times for the relevant load increment. As the
applied nodal forces now do not match the computed stresses, these forces are
corrected by computing - by means of the virtual power equation - a corrective
nodal load vector, which is taken account of in the next load step.
The program developed for plane stress, plane strain and axial symmetric problems
contains the isoparametric quadrilateral element with a four—point integration
rule.
As a consequence of the condition of incompressibility with fully plastic incre-
mental deformations, the number of kinematic constraints for plane strain and
axi-symmetric problems limits the actual number of degrees of freedom of the finite
element mesh drastically and unrealistic solutions may be obtained. To overcome
this difficulty a modified deformation rate as proposed by Nagtegaal et al. [8]
has been incorporated in the program.
The program has the possibility to prescribe the behaviour of the elements per
element group: linear elastic, elastic-plastic infinitesimal strains, elastic-
plastic finite strains.

MATERTAL CHARACTERISTICS

To compute stresses and deformations around the tips of cracks where large defor-
mations occur it is of vital importance to base these computations upon one-
dimensional true stress-natural (logarithmic) strain curves which are realistic
in the large deformation range. As such a curve for AISI-304 material is not
available from literature, experiments have been done in our laboratories with a
MTS-testing machine coupled to a PDP-11 processcomputer. These tests comprise
tensile tests with four 6 mm—diameter cylindrical specimens, which have been
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pulled up to an engineering strain of about 87 at a speed of 0.15%/sec. and with

8 axisymmetric specimens to determine the true stress-natural strain curv

fracture. e up till

These latter specimens which have been pulled at a speed of 0.2%/sec.
measured at t?e.neck have been given an initial radius of axial curvature of

50 mm‘and'an initial minimum diameter of 6 mm. The axial curvature promotes the
1?c§llsat}on of the neck, enabling in this way a correct measurement of the
minimum diameter of the cross section. ’

F?om these tests the average value of the stress across the neck, being the load F
d1v1§ed by the current area of the neck A, is plotted in Fig. 1 versus the natural
strain (denoted by 1n(L/Ly)) measured in the neck of the specimen and which

with Ag being the initial area in the neck equals 1n(A,/A). In this figure Ehe

band of spread of the experimental data is shown by thg hatched area.

To déscrlbe the'hardening character of this material, the results of the cyclic-
strain tests which were performed by TNO, Metaalinstituut in The Netherlands on tu-
bular specimens could be gratefully used. The diameter of the cylindrical inner
surfacg of thgse specimens is 25 mm. The specimens have been given an axial curva-
ture with rad}us of 300 mm. The minimum wall thickness isg 2 ém. The gauge length
is 32 mm. é flnitg element computation has been made of these tubularjsnicimeni
gnder cyclic-strain loading and by adjustment of the different parameters contained
in the fraction model, a reasonable description could be obtained.

o
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Fig. 1. Stress-natural strain Fig. 2. Experimental and com-—
curves. '

puted Ist cyclic-strain
curves for AISI-304.
Ae = + 0.5%

In Fig. 2 the experimental cyclic-strain curves for the first cycle for 2 different

specimens and the computed curve are shown. In the figure the stress-strain curve
as found by the tests on the 6 mm diam. cylindrical specimens, and upon which cur;e
the abovelmentioned computations have been based, is also sho;n.

The material was modelled by taking 4 fractions. One of these fractions has been
given a sma%l participation factor but a fair amount of isotropic hardening. The
other fractlons'behave elastic-ideally plastic. All fractions are in the nlastic
range at a strain of 0.4%. With this material model saturation occurs afterAabout

4 cycles, which is in fair agreement with the experimental results

After the beginning of necking in the tensile specimens :
the formula F/A must be corrected. With the well known B;i
corrected curve is shown in Fig. | as well.
beev checked by a finite element computation
paring the results of this calculation with t

the stresses as found from
dgman formula [9] this
This Bridgman-corrected curve now has
of the same tensile specimen. By com-
he experimental results it appeared
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that this corrected stress—strain curve underestimates the true stresses. The stress-—
strain curve which reasonably matches the experimental data is the multilinear
curve shown in Fig.l, indicating that the Bridgman correction leads to an under-—
estimation of the stresses of max. 4%. The result of the finite element computation
based upon this multilinear curve is shown in Fig. 1 by the curve with crosslets.
The behaviour of AISI-304 being adequately modelled in the way described above, has
been used in further studies.

NEAR-CRACK TIP FIELDS
The computations of stresses, strains and other relevant quantities near the tip of

a crack have been performed for a Compact Tension Specimen (CTS), loaded in the
range of small scale yielding. The main dimensions of the CTS are shown in Fig. 3a.

Fig. 3b. Undeformed near tip
finite element mesh.

Fig. 3a. Compact Tension
Specimen. a= 100 mm,
H=240mm, W= 200 mm.

As there is symmetry of geometry and loading with respect to the x-axis, the fi-
nite element mesh can be restricted to the upperhalf, provided one prescribes
appropriate boundary conditions along the x-axis. The undeformed mesh near the
crack tip is shown in Fig. 3b. The crack tip has been given a small initial radi-
us: 8¢i/2. This mesh is surrounded by a ring of elements with an outer radius of

5 mm. As the plastic zone lies within the boundary of this mesh, the elements out-
side this region have been treated as an elastic substructure. The number of quad-
rilateral elements in the mainnet is 187. The number of degrees of freedom is 426.
The computations have been made on a DEC-10 computer at the Twente University of
Technology. They have been carried out for elastic-ideally plastic material
(el.-id. pl.) and for AISI-304 in plane strain conditioms.

The "specimens" have been loaded upto a stress-intensity factor Ky given in Table
I. Next the load has been removed and then applied for the 2nd time to its maximum
value.

TABLE 1. Different data, defined in text.

el.-id.pl. AISI-304
0o (N/mm?) 250 180
E  (N/mm?) 7.5 x 10% 2 x 10°
v 5 0.3 0.28
max. Kp (N/mm2) 1560 1250
8¢i (um) 12.0 4.2
max. GC'Iéti 7.4 3l

The number of incremental steps, applying the load for the first time is approxi-
mately 150. In Table I the yield point in uniaxial tension Oy, the elastic modulus
E, Poissons' ratio v, the max. stress intensity factor Ky, the initial notch width
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Sti and the ratio of computed width 8¢ at max. load and 8ti, have been given for
both materials.

From Fhe large quantity of data only a small part can be presented in this paper
The size and shape of the plastic zone for el.-id.pl. agree reasonably well with.
the results found by Larsson and Carlsson [10] with a max. radius of 0.13
(9.11vby L & C)x(KI/OO)Z. After load removal the max. radius of the reversed plas-
tlc‘?one for this material is about one third of this value.
;: ;;i. ? tge defogmed gzometries of the blunted near tip mesh for both materials
. load are shown. Att i i i i
TR Casee:ntlon is being drawn to the hump near the blunted tip
Thg Crack TiP Opening Displacement (CTOD) defined by (8¢ - 8¢;) measured at the
point shown in Figs. 3 and 4 conform fairly well with resulté found b
[2] for el.-id.pl., resulting in the formula

CTOD = C(1-v?) Ky2/(Eg,
with C = 0.65 1/ Ee)

y McMeeking

arn

I=!

o

Fig. 4. Near tip deformed meshes
a) elastic-ideally plastic
b) AISI-304

Fgr the hardening AISI-304 the notch width is far less defined as may appear from
Fig. 4b: Moreover the constant C in eq. (11) now appears to be a function of load,
decreasing (for the position chosen)from about 0.35 at zero to 0.215 at max. load.

78 18

e oo
——= 61.(E64.10°5)(N/mm?)

Fig. 5. Crack tip opening 8¢ (times Eo,.107%) at cycling load
as function of Ky for el.-id.pl. and AISI-304.

In F}g. S‘the notch width §; has been plotted as a function of K1 for the whole
loadlgg history and for both materials. It shows clearly that after load removal
the width is still quite considerable. Crack closure does not occur as the crack
does not grow. After applying the load for the 2nd time the notch width is larger
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than the first time. In the figure the points where in the first element all frac-
tions become plastic at loading and unloading have been indicated by crosslets.
For el.-id.pl. the near tip normal stresses divided by 0o for points ahead of the
crack on the x-axis have been plotted in Fig. 6a as a function of the position of
the point relative to the notch surface in the undeformed configuration along the
x-axis (R) divided by the notch width §y. At the notch surface the stress Oy agrees

with the analytical value of 1.15 Oy, the stress Cy being nearly zero there, as it
must be. The max. value of Oy is 3.1 oo at R/8y = 3.8. As found by McMeeking [ 2]
these stress fields remain unchanged as function of R/ét above a load correspon-—
ding to appr. K = 800 N/mn¥? probably indicating that at this load - when & is
about 2.5 times its initial value - the blunted crack tip has obtained its ulti-
mate shape. Fig. 6a also shows the results found by McMeeking [ 2] and Rice and

Johnson [ 1].

06.

[ [
—R/6y -30. b

Fig. 6. Near tip stress distributions for el.-id.pl. ahead of
crack tip.
a) above K1 = 800 N/mm*2 With results of McMeeking and
Rice and Johnson
b) after load reversal at zero load.

In Fig. 6b the residual stresses near the tip remaining after load removal have
been plotted for the same points as a function of R/8t. The max. value of the com-
pressive stress Oy is 2.7 0o at R/S8¢t = 2.7. After the application of the load the
2nd time the same stresses are found as the first time. The stress 0 equals

(ox + Uy)/Z in the region R/8¢<2, indicating that the material behaves fully plas-
tic in that region.

10, N T S 8 10
- Ry
!{ o max load \ i

M i |
e 2maxtoa b

Fig. 7. Near tip stress distributions for AISI-304 ahead of
crack tip
a) at max. loads, lst and 2nd time
b) after load reversal at zero load.
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Zizcilii—Bog the ?ear tip normal stresses, divided by 0, for points ahead of the

ve been i i i i

S plotted in Fig. 7a as a function of R/8t at first and 2nd max.

Clear}y the st?esses'after applying the load the 2nd time now do not equal those

occuring the first time. Attention is being drawn to the sharp increase of

i;zeises cl;se Fo the notch surface, arising from the elevation of flow stress by
arge plastic strains in that area. The stress

i i e S es after load reversal at zero

I? the next two flggres tbe extensional strain being the total extension of a line

i.ement divided ?y 1ts original length is plotted for elements in x- and y- direc-

1;:n§ ghgozgh p01?tsdon the x-axis ahead of the crack. These strains Ex and Ey for
nd snd max. load resp. after load reversal at zero load

. . . ate i

id. pl. in Fig. 8 and for AISI-304 in Fig. 9. 4 s

s
-« ™ max.load .
i nd w
Rl +- 2 max.load =
| o
|

Y
=

S S S
A 2
R/6t % ———=R/5¢
x

Fig. 8. Extensional strains Ey and E, ahead of crack
tip for el.-id.pl. mat.

a) at max. loads Ist and 2nd time
Results of Rice and Johnson

b) after load reversal at zero load

s
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\
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.0,

o i

t
+ . 1" max.load

nd
«~ 2"'maxload |

Fig. 9. Extensional strains Ey and Ey ahead of crack
tip for AISI-304
a) at max. loads Ist and 2nd time
b) after load reversal at zero load.
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In the intense strain zone the strain E,, increases sharply towards the notch sur-
face. After applying the load for the 2nd time this strain is larger yet than the
first time. As the extensional tangential strain at the notch surface is propor-
tional to the value (8 -8¢i)/8yi, this agrees with the result that the notch
width after the 2nd load application is larger than the first time. The strain Eyx
approximates the value -1 near the notch surface for el.-id.pl., which is in
agreement with the vanishingly small width of the elements, directly at the
blunted crack tip (see Fig. 4a).

The finite shear deformation being defined by the change of the angle of m/2
between undeformed line elements in x- and y- directions, has a maximum at the
notch surface of 1.5 rad. and 1.1 rad. for resp. el.-id.pl. and AISI-304 both in a
region 8 = 0.6 - 1.2 rad. The maximum computed rotations for elements at the
notch surface is about 0.26 rad. for both materials.

ACKNOWLEDGEMENT

The authors would like to express their gratitude to TNO, Metaalinstituut, for the
permission to use their experimental data. Recognition is due to prof. dr. ir.

P. Meyers for valuable discussions. Thanks are due to the laboratory staff for
their assistance.

REFERENCES

1. Rice, J.R., and M.A. Johnson. Inelastic behaviour of solids (ed. by M.F.
Kanninen), McGraw Hill, New York, 1970, p. 641
2. McMeeking, R.M. J. Mech. Phys. Solids, 1977, Vol. 25, p. 357-381
Rice, J.R., R.M. McMeeking, D.M. Parks and E.P. Sorensen. Comp. meth. in appl.
mech. and eng., 1979, Vol. 9, p. 411-442
Nemat-Nasser, S. Int. J. Solids Structures, Vol. 15, p. 155-166
. Fung, Y.C. Foundations of solid mechanics, Prentice Hall, 1965
Besseling, J.F. Jrnl. Appl. Mech., Dec. 1958, p. 529-536
Rice, J.R. and D.M. Tracey. Computational fracture mechanics in numerical and
computer methods in structural mechanics (ed. by S.J. Fenves and others),
Ac. Press, New York, 1973, p. 585
8. Nagtegaal, J.C., D.M. Parks and J.R. Rice. Comp. meth. in appl. mech.. and eng.,
1974, Vol. 4, p. 153-177
9. Bridgman, P.W. Studies in large plastic flow and fracture, McGraw Hill, New
York, 1952
10. Larsson, S.G., and A.J. Carlsson. J. Mech. Phys. Solids, 1973, Vol. 21,
p. 263-277

w

~N o U B



User
Rettangolo


