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ABSTRACT
A two-stage line zone model is used to describe fatigue in polymers. An extension
to a previous version is described, in which only part of the zone is completely
unloaded for varying mean stress conditions (different R ratios). The possibility

of the unloaded zone being sustained at the crack or zone tips is explored which
leads to growth rates which are dependent on maximum X or AK. A residual stress
distribution due to unloading is also included. Examples are given in which this
model is applied to several polymers.
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INTRODUCTION

Fatigue crack growth occurs in most polymers at stress intensity values well below
those for growth under constant loading conditionms. The data is rather similar in
form to those for metals and is thus conveniently described in terms of the Paris
law (Manson & Hertzberg, 1973), but attempts to correlate the parameters from this
empirical representation have not been particularly successful. An attempt to
describe fatigue in terms of parameters which can be related to other material
properties has been made (Williams, 1977; Mai & Williams, 1979), in which the
crack tip region was modelled as a line zone whose load carrying capacity, 0,, Was
reduced to a o on unloading and reloading. This leads to a two-stage line zone,
as shown in Figure 1, in which reloading on each cycle leads to the growth of the
zone, and if a critical displacement at the crack tip is used as a fracture
criterion, stable crack growth is predicted, after a period of incubation, of the
form:

%V = _g___z____ (K% - o K 2) 1)
(1-a)2 ¢ 2
c
where KE is the single loading fracture stress intensity factor. For K2 >> g Kcz,
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Fig. 1. Two-stage line zone model

da/dN « K? which gives a power of two in the Paris law, while for lower X2 values
this becomes apparently larger on log-log plots. A fatigue limit is predicted
for K? = aKéz and graphe of da/dN versus K? should be linear. This has been
found to be %o for a wide range of polymers (Williams, 1977; Mai & Williams, 1979)
but with several regions of behaviour at different X levels. The representation
has also been found to be useful for including environmental effects where the
environment augments the fatigue effect in o (Mai & Williams, 1979).

The original version of the analysis did, however, have shortcomings which have
come to light in further applications. In particular, the effect of varying R

(K . /K ) ratio was taken to be that the whole tip zone partially unloaded
and"#haT% was a function of R? such that o = 1 when R = 1. Although quite a good
representation of the data, this approach gave rise to a number of difficulties,
the major one being that o, determined from the slopes of the various da/dN versus
K2 lines, increased rapidlg with R. Although modest changes could be explained
(by constraint effects, for example), those observed in some materials were much
too large (for example, Mai & Williams, 1979) and it has been necessary to
re-examine this aspect of the model.

R EFFECTS IN THE LINE ZONE MODEL

It will now be assumed that partial unloading results in the complete unloading of
part of the zone. It will further be assumed that o and o are the same for this
fully unloaded section and that fracture occurs at the same K condition as in the
completely unloaded case. The limiting case of K = Ka should give
da/dN = r_ = (1/8) (K 2/c 2), but this is not so in equation (1). ° This arises
because of the approgima%ion used in the derivation of equation (1) which is valid
only for ro/ﬂl < } (see Figure 1) and for » /r’i > }, which includes the limiting
s:

case of K = e the appropriate approximatign

da n
= — " (K -o0Kk)? (2)
a B g=a)j? g ° ¢

for which da/dV = r at K = K_as required. The transition to this form of
behaviour occurs oniy at a rafher extreme condition and does not affect the

subsequent discussion.

The several assumptions can only be accommodated in equation (1) by assuming that
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K2 now takes the form of an effective value dependent on R and it has been found
that there is evidence of a threshold value of KX, KO, below which there is no

growth. This probably arises from the residual compressive stresses at the crack
tip which inevitably occur on unloading. The final form of the equation is:
da T 1
= - ————— [F(R) (K2-K2) - a K?] (3)
L) B(J—aﬂ %2 G I

where F(0) = 1.

Some possible types of behaviour which determine F(R) are shown in Figure 2. In
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(1) First type — zone tip sustained (ii) Second type - crack tip sustained

Fig. 2. Partially unloaded zone types

the first type (i), the non-unloaded zone is sustained at the zone tip and is thus
an integral part of the fatigue zone. Unloading takes place from the zone tip
backwards so that cycling would tend to result in the loaded zone moving backwards
along the zone to the crack tip. On reaching the crack tip, it would, of course,
fracture and be moved back to the zome tip. Such behaviour would result in a
tendency to unstable crack growth. The overall average effect can be modelled by
the two cases shown in Figure 2 as the first and second type which may be treated
as bounds on the behaviour and result in F functions of the form:

Fry i dis (1-a)2 R?
(4)

: .., = (1-R)? 2
and F(Lt) (1-R)? +a R

In general, type (i) will dominate when there is a single deformation mechanism
which can only be sustained at the zone tip and results in F being slowly varying
in R for low R values. Type (ii) can only be sustained when there is a distinct
separate deformation process around the crack tip, as with shear bands or craze
bunches, and gives a rapidly varying R function at low R and da/dV « (1-R)2 K2,



438

which is a dependence on AX. Cases in which both exist are conceivable and would
require some average F to accommodate the appropriate proportions. For equal
parts, for example, we would have:

F = (1-R) +% (3-a) R? (5)

For comparison with experimental data, it is convenient to express the parameters
in equation (3) in terms of the slopes of the da/dN versus K2 lines, S, and their
intercepts, I. Thus:

a K2
s %—*—*——F(m and I = S +x2
(l—wzoj F(R) ©
and F(R) may be eliminated to give:
§I = —>—r»_ +K?25 (6)
(1=a)2 €

F(R) may be expressed in terms of the slope at R = 0 since F(0) = 1, so that:

S
F(R) = 5 7
SO

SOME EXPERIMENTAL COMPARISONS

Figure 3 shows slope data for various polymers plotted as S/S versus R in
accordance with equation (7). Also shown are lines corresponding to equations (4)
for various values of a. Several types of behaviour are apparent. For PMMA, we
have a close fit to type (i) with a low o value, while polystyrene and the modified
PVC are close to type (ii) with low o values. This is sensible in terms of known
behaviour since PMMA has a high shear yield stress and tends to form stable single
crazes at the crack tip (Marshall, Coutts & Williams, 1974). Polystyrene, on the
other hand, is much more prone to craze bunching at the crack tip (Marshall, Culver
& Williams, 1973) and modified PVC does give shear yielding and multiple crazing.
The unmodified PVC is not fitted by either extreme and suggests a mean F case with
a low o value. Not shown on this graph are some data on several epoxy, thermoset
resins in which S and I remained constant within experimental scatter up to

R = 0.6. These are extremely brittle materials with very small plastic zones in
which there is only a small reduction in X for fatigue. Thus, for

Kcz = 0.36 (MN/m3/2)2 we have intercept values of approximately 0.20, giving

a = 0.6. This would result in slope changes in type (i) behaviour of only 7% at
R = 0.6, which is of the order of experimental scatter. Similarly, frequency
changes in PMMA down to 1 Hz resulted in a much reduced variation in S, suggesting
a substantial increase in a. It is apparent that the determination of o from
variation in S is difficult for high values in type (i) and also for low values in
type (ii), since the change is dominated by the (1-R)? effect. Sometimes, the
derivation is possible, however, and the PMMA data at 10 Hz is shown in Figure 4,
showing a good fit to type (i) behaviour with a = 0.076 with o = 1.16 GN/m? and
ag, = 88 MN/m?. The reduction of this very high value to approximately the craze
stress has been discussed elsewhere (Williams, 1980) and probably reflects the
underlying molecular fracture mechanisms. The scatter in the PS and PVC data

439

Type (i)
— —— Type (ii)
O PMMA, 10 Hz
® PVC, 1 Hz
A Modified PVC, 10 Hz
m}

PS; 0.15 Hz

Eig.. 3. Slope data for various polymers

preclude any accurate determinations of a.

The intercept (i.e. threshold) data are much less prone to scatter and this is
reflected in the data plotted in accordance with equation (6), which is
independent of F(R). Figures 5 and 6 show lines for PMMA and PS, respectively
which give good linearity from which ar /1-a)2 and X 2 may be found. Table i
list values for the materials considered here and o vaiues of less than 0.1 are
suggested for all the materials, except the epoxy. It is also worth noting that

2 ;
(KO/Ké) = 0.2, which would be expected for a simple residual stress argument.

CONCLUSIONS

The additions to the basic two-stage line zone model which involve complete
unloading of part of the unfatigued zone and a residual compressive stress do
appear to model observed behaviour in a number of polymers. The apparent
c?mplication observed in much published data would appear to arise from quite
different forms of crack tip behaviour in which the unloaded zone is either at the
crack or the zone tip. There is also some evidence of widely varying values of
the damage factor, o, in different materials and perhaps with frequency.
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Fig. 4. Slope of da/dN versus K? data for PMMA at 10 Hz
TABLE 1
; 2 2 K2 x 2
Matei;al KO (urc)/(l—a) So o K % i
an
Frequency (MN/ms/z)2 (um) um/(MN/ma/Z)2 (MN/m3/2)2 (MN/m3/2)2
g 0.18 0.020 0.34 0.059 0.70 0.08
10 Hz
PS &
. 7.70 0.045 = 1 0.045
0.15 Hz 0.20 0.350
ModiZied FVE 0.18 4 x 107" 0.027 0.015 =1 0.015
10 Hz
e 0.29 0.056 0,17 0.33 = 2 0.08
1 Hz
Ipoxy 0 0.040 0.18 0.22 0.36 0.61
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Fig. 5. Slope and intercept data for PMMA at 10 Hz
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