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ABSTRACT

The pulled-out lengths of fibres, which are observed when composites fracture, can
be shown to be controlled by the fibre flaw distributions. Small flgws in the
fibres give fibre strength-length relationship of the form o L AL ™ where A and m
are parameters which are different for different fibres. Thg pulled-out Tengths

can be shown to depend on A and m, together with fibre and matrix elastic constants,
and the matrix shrinkage stress that arises during composite manufacture. The
results explain why high modulus fibres such as boron and carbon make brittle com-
posites, and indicate how they may be made much tougher. This can be effected by
choosing a matrix with a very low shrinkage stress.
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INTRODUCTION

One of the weaknesses of fibre composites is their poor toughness, especially for
aligned fibre composites made with high modulus fibres such as boron or carbon.

Data for reinforced polymers is reviewed by Piggott (1980), and basic processes
contributing to toughness have been critically reviewed by Cooper and Piggott (1977).

Fibre pull-out during the fracturing process is the most important contributor to
the work of fracture with aligned fibre composites, but conditions which favour
large works of pull-out have disadvantages. Thus low fibre-matrix interfacial
shear stresses (produced for example by coating the fibres with o0il, Harris et al,
(1971), give composites which have large works of fracture, but poor shear proper-
ties. Also, the large crack openings required to generate the work of fracture
presents a serious problem (Piggott, 1978a).

Harris et al (1971) showed that fibre pull-out occurs during fracture, even when
the fibres are continuous. An explanation for this has been advanced for flaw-
free fibres by Piggott (1978b). However, the commonly used fibres such as glass
and carbon, have flaws which will influence the processes taking place. In this
paper, the influence of fibre flaws is discussed, using fibre length-strength
relationships that are flaw controlled.
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THEORY
Figure 1 shows a region of a propagating crack which is bridged by three fibres,
one of which has just broken. Near the break, the fibre stress is quite small,
and the loss of fibre stress results in it shrinking longitudinally and expanding
radially. As the crack opens under increasing stress intensity factor, the fibre
will slide out, and do work, Uf where
= 2
Uf nrl T (1)
if the interfacial shear stress is constant and equal to e

To determine the average value of L we need to know (a) how the stress in an
unbroken fibre varies with distance from the crack plane, x, and (b) how the flaws
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Fig. 1. Fibres bridging a crack. The central fibre has
broken at distance L from the crack face.

The fibre stress-distance relationship is derived from the well known equation

do
f 2
T - ;; (2)
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where 1 is the interfacial shear stress, which for a fibre in a polymer is not
constant along the fibre length. It can be shown that at quite low applied
stresses, the fibres-matrix bond fails near a discontinuity, such as a fibre
end (Piggott, 1978b). Sliding takes place at the interface, governed by the
coefficient of friction, u and the normal stress, o where

Sa B Ve % Rl e (3)
and v, are Poisson's shrinkage coeff1c1ents, related to fibre and matrix
P$1sson ¢ ratios, on is the matrix stress in the x direction, E; and E¢ are
matrix and fibre moduli, and o, is the residual interfacial stress that is
usually present in a reinforced polymer. It is usually negative (compressive)
and results from cure shrinkage of the matrix in thermosets, and differential
thermal expansion between fibres and matrix in thermoplastics. Near the crack

plane oy is zero, and since 1 = -po,¢, we have

dof
F = (\)QGfEm/Ef + Or) 2\J/Y’ (4)
so long as )
\)ZofEm/Ef + Oy < 0, i.e.
o E (5)
el rif
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o = or* i blC px/r

Fibre stress or strength

IE{ECI

Distance from crack, or length

Fig. 2. Schematic drawing of fibre stress as a function of distance
from the crack face, of = cr beP*/* at two applied stress
levels, together w1th fibre strength Tength relationship
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Equation 4 integrates to give
* bepx/r (6)
r

where

o =-o0 Ef/sz

r T m
p = 2uv,E /E,

and b is determined by the boundary conditions.

Note that b > 0; also a > 0 so long as matrix shrinkage takes place during com-
posite manufacture. Fig. 2 shows o¢ as a function of x. Two curves are shown,
corresponding to different boundary conditions. The curves do not extend to
zero stress, since in general, the fibre stress will not be zero a long distance
from the crack face, but will instead be given by Ece. where g, is the composite
strain remote from the crack.

The fibre flaw distribution has not, so far, been examined in detail. Instead,
fibre strength vs length has been examined in detail in the case of glass by
Metcalf and Schmitz (1974), and in less detajl for carbon by Hitchon and
Phillips (1978). The measurements generally show two regions in a In (strength)
vs In (length) plot. In both regions

In (strength) —

In (length)

Fig. 3. Type of fibre strength-length relationship observed with
glass and carbon fibres.
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o -m

G, =AL (7)
but A and m are different in the two regions. Thus Tines with two slopes are
obtained, as shown in fig. 3. A and m values are different for different fibres,
or for the same fibres which have been treated in different ways.

In fig. 2, we have superimposed a curve of the form given 1n uat10n‘7. It is
c]eargthat for the boundary conditions giving o, = o% - b e <72 the fibre stress
is nowhere 1arg7 enough that the breaking po1nt is reached However, for

og = ok - b,ePX/T, the fibre stress is higher everywhere, due to an increase in
Toad on the cracked specimen, and the fibres can break at a stress oy, at a
distance x, from the crack face.

For the two curves to touch as shown, dog/dx = dog,/dL, when L = x,. Thus differ-
entiating equation 7 and substituting the appropriate values we obtain
-m-1 _ 2y -m
-mAx, == (vaxb Em/Ef + Ur) (8)
For glass and carbon m is quite small. For example an E-glass gave m = 0.049

and A = 2.8 x 109 for L < 5.9 mm and m = 0.125 and A = 1.9 x 10% for L > 5.9 mm.
Thus we can obtain an approximate solution for equation 8 by letting m = 0, i.e.

Fibre stress or strength

\
\
1

Distance from crack, or length

Fig. 4. Schematic drawing of fibre stress vs distance from crack face
for relatively low maximum fibre stress. Also shown is fibre
strength-length relationship

o -m
Ofy = AL



X = mAr (9)
b Zu(—or-vaEm/Ef)

In the event that equation 9 does not have a positive solution, we have the sit-
uation shown in fig. 4. In this case we determine Xy from equation 7, using
Of, = Epec and x, =1L, i.e.
i 1/m

X, = (A/Efec) (10)
Since m << 1, small values of composite strain, e., will involve very long fibre
lengths. If the test specimen is not very large, it may not be possible to
break the fibres at all. The maximum fibre stress in this case is given by
of = opEg/voE (compare this with equation 5). Clearly for of to be less than
Ofys We need Ef/Em, and -o.,not to be very large.
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Fig. 5. Work of fracture of aligned fibre composi?es as a fuqct1on
of fibre Young's modulus for polymer matrix compressive
shrinkage stresses of 10 and 20 MPa. The relative positions
of boron, carbon and glass fibres are marked.

PRACTICAL IMPLICATIONS

When a fibre has broken, we assume it pulls out at constant shear stress
T4 = -uor. The work of fracture G, can be,calculated from equation 1; for a

volume fraction of fibres Vg, G = 2V¢Ug/nr". Replacing T4 by SO, L by Xy
(equation 9), and re-arranging, we obtain
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Fig. 5 shows a plot of work of fracture vs fibre modulus, where it is assumed
that we can use A = 1.9 x 109, m = 0.125, and v, = ve. Results are plotted for
two values of o.: - 0.01 and - 0.02 GPa. The effect of modulus is very marked,
and similar results are obtained if we use the other values of A and m.

Although we cannot directly compare carbon, boron, and glass in this graph, the
results for op between - 0.01 and - 0.02 GPa do fit in quite well with the ob-
served values for G for these materials Piggott, (1980). (In carbon-epoxies it
is considered likely that o, has a value close to - 0.02 GPa.) Thus the lack of
toughness of boron and carbon reinforced polymers does appear to be due to their
high moduli.
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Fig. 6. Work of fracture for aligned fibre composites as a function
of matrix shrinkage stress, for carbon and glass reinforced
polymers.

Equation 11 suggests a way in which the toughness might be improved. Fig. 6,
shows the effect of varying the residual stress. If this can be reduced to
about 5 MPa, it should be possible to obtain a carbon composite which is as
tough as the normal glass composite. To do this, a polymer with a very low
shrinkage is required, or one that is sufficiently soft that the shrinkage
stress can be removed by annealing. The toughness can be adjusted by control
of the shrinkage stress, and this can be done without Toss of other mechanical
properties, so long as the fibres are very long Piggott, (1978b). The actual
value of o_ needed depends on A and m however, and these are usually not known

for fibres'that have been subject to the composite making process. The damage
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that this causes could well cause them to have degraded values (i.e. m higher
and A Tower).

CONCLUSION

The length-strength relationships that are observed with brittle fibres such as
carbon and glass can be used to explain the observation that high modulus fibres
give composites with low works of fracture. It also indicates a method whereby
composite toughness might be improved. To do this the interfacial normal stress
due to matrix shrinkage during manufacture must be reduced in a controlled
fashion.
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