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ABSTRACT

The Jext integral is considered as the release rate of the potential energy per unit
advance of the crack tip and the distributed dislocations. A compact type specimen
is analysed by F.E.M using finite deformation theory. On the basis of these results,
the relation between the process zone and evaluated values of the Jext integral along
several contours is studied. At the same time the values of the J and J*ext integrals
are compared with them. These results indicate a relationship between the process

zone and the values of the Jext integral. This relation is discussed as it depends
on the load and the size of the process zone and the following equations are obtained:
Jext.pz=CPr=é—(:~JP ( C about 30 m~L )
Y

where Jext.pz: Jext integral along a path very close to process zone
Pt lioad
r: representative distance of contour from the crack tip along the x axis
Oy: yield stress

KEYWORDS

Jext integral; distortion tensor; Peach-Koehler force; process zone; J integral

§1 INTRODUCTION

It is undeniable that Jic is one of the best fracture criteria of elastic-plastic
fracture mechanics which has appeared up to the present. There have been various
discussions on the structure of the J integral, but it is not yet completely settled.
It is well known that at the tip of a crack there is an intensely deformed nonlinear
zone called the process zone, and in this zone there occurs the development of holes,
tearing and other fracture process which resist the current plasticity treatment.

Rice and Johnson (1970) have conducted analysis in this region using slip line theory
and more recently large strain, finite element analysis, (recent work of Rice and
McMeeking,1975). This problem is also treated by McMeeking (1977a,1977c) and Atluri
(1977) and the J integral is discussed as a parameter characterizing the near tip
field.
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On the other hand, Kageyama and Miyamoto (1978) introduced the concept of Jext which
dose not lose physical meaning in the elastic-plastic state. This concept is con-
sidered to be the release rate of the potential energy per unit advance of the crack
tip and the distributed dislocations. Jext is equivalent to Qg which was introduced
by Bilby (1973).

In this paper, a compact type specimen is analysed by the finite element method

using finite deformation theory. The evaluation of the process zone is made by

calculating Jext in the near tip field. These results are compared with those of
infinitesimal deformation and slip line theory relating to the connexion between
Jext, J, J*ext and P.

§2 Jext AND ITS PHYSICAL MEANING

The Jext integral is based on the energy consideration of a body with eigen-distor-
tions. Consider the case when an eigen-distortion Bf*;i is distributed in a body
and an applied force acts on the boundary of the body. In the two-dimensional case
the Jext integral is defined by

Jext = [ (Wodx,~T4B; ;ds) (2,29

where T' is a closed path, W® is the elastic strain energy density, Ty is the Xy
component of the traction vector on ds, and B;; is the elastic distortion tensor.
By using the dislocation density tensor Eq. (2.1) is transformed to

Jext =fQ(0i2a31—oi3uZi)dx1dx2 (2.2)

where Q is the domain enclosed by T, G'j is the stress tensor and 0 is the dislo-
cation density tensor and is given as %ollows:

%13 = S110%%Brg = ~C11caPiB e L8y

where 9y means 9/9xy and €43¢ is the permutation tensor. Equation (2.2) represents
the x; component of the Peach-Koehler force on continuously distributed dislocations
in the region Q. 1In case I' encloses a small region near the crack tip, the crack
may be replaced with the equivalent distribution of dislocations. Jext can be inter-
preted as a potential energy release rate when the crack tip and dislocations move
by 6, in the x; direction:

Jext =~ lim %Té (2.4)

8170 1 Q,aij,crack

This interpretation of the Jext integral is applicable independently of the mechanism
of plastic deformation. Therefore, the Jext concept is available for use not only
in the incremental theory of plasticity but also in the physical theory of plasticity,
and we can apply it, for example, to the unloading process and to stable crack
propagation.

If the contour I passes through the elastic region, Jext is equal to J and is inde-
pendent of the choice of contour. But if the contour passes through the plastic
region, the Jext integral depends on the choice of contour. For the study of elasto-
plastic fracture mechanics, the region § should be related to the crack tip fracture
process zone and Jext is expected to represent the physical state of the process zome.

Next consider a case when eigen-strain is distributed inabody D and a constant
applied traction acts on the surface !D‘. If the distribution of eigen-strain changes
by Gs*ij in the domain @, the change of the potential energy is given by

= * =
8 == [0, ;8¢7 jav (dv = dx;dx,dx3) (2.5)
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The J*ext integral is defined as the change of potential energy per unit parallel

Tovemgnt of the eigen-strain distribution in Q. In the two-dimensional case, there
is a simple relation between J, Jext and J*ext:

STl *
J* =i el
ext 1lim 7 fQo..Bleijdv

88770 #
=Jext—fFTiBfids (2.6)
Jext =fF(wedx2—TiBlids) (2.1

<o Trext = [1[Wedx,-T, (B, ;+B%)ds]

= [ [Wedx)-T, 3  uyds] 2.7

Ji= IT[dez—Tialuids] (2.8)

= [ L) dx =T, (B, ,+B%, ;) ds) (2.9)

or J*ext - Jext = —fFTiB*lids (2.6)
J - Jkext = J’prdx2 (2.9)
J - Jext = fl_,[wpdxz—TiB*lids] (2.10)

§3 THE BEHAVIOR OF Jext IN THE C-T SPECIMEN

A compact type specimen, shown in Fig. 3.1, is analysed by the finite element method
using finite deformation theory for a 2-dimensional plane strain state. The material
properties are shown in Table 3.1.

T TABLE 3.1 Material Properties
16
L{Eiil— Young's modulus E = 206 GPa
26 Sy Poisson's ratio v = 0.3
—___—__"__;;;r__ 60 Yield stress Oy= 549 MPa
Hardening ratio H = 981 MPa

z CRACK
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Fig. 3.1 Compact type specimen

Fig. 3.2 shows the finite element mesh of the half part of the C-T specimen. As
recent results (McMeeking,l1977b) show that the finite element calculations modelled
the blunting of an initially-sharp crack, even though the tip actually had a finite
root-radius in the undeformed configuration, so considering the blunting of the crack
tip, the crack is assumed to be a slit whose width is 0.125 mm before deformation.

To evaluate the J, Jext and J*ext values, the path integral method is employed, and
the thick lines show the sixteen contours for calculation of J. :

Fig. 3.3 shows the computed load P versus load- line displacement curve. In this
analysis the general yield load per unit width is 3.11 MN/m. And also, the general

yield load by slip line analysis (Shiratori and Miyoshi,1979) is obtained by the
following equation:
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Substituting Eq. (3.2)~(3.5) in Eq. (3.1), we obtain T=3.20 MN/m. This result 0 A =
agrees well with that of finite element analysis. 00 r“?mm) 10
e I 2 3 45678 9012346k
Fig. 3.4 shows the J-P curve. In this, J is the average of sixteen contours, and CONTOUR NO. =
Jg, Jy and Jg are evaluated by the P-§ curve in Fig. 3.3, where Jg, Jy and Jg are .
evaluated by Rice's (1973), Merkle's (1974) and Shiratori's (1979) equation respec-— () I5xt
tively. In this case Jy agrees best with J. Fig. 3.5 shows the values of J, Jext )
and J%*ext on each contour at the load stages A-F, in Fig. 3.3, where r shows the 7 3 45 678 9w0nizuube
representative distance of the contour measured from the crack tip on the x axis. ¢ 7777 infinitesimal deformation CONTOUR NO.
The J value shows path independence, and the Jext value path dependence. The results Fi ; )
g. 3.5 J, Jext * o <
for infinitesimal deformation are shown by the dotted line. Fig. 3.6 shows the o ez}éh Echitgu:Xt diserbuglon (c) J-Jext (=f [Wpdxz-T-B*-ds])
difference between the J, Jext and J*ext values. T Iz iF11
ig.3. Difference between J, Jext and J&xt
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§4 EVALUATION OF PROCESS ZONE USING Jext

The Jext integral is path dependent, and the Jext value evaluated at the contour

close to the process zone might be thought as the most straightforward expression
of the state in the process zone.

Rice and Johnson (1970) indicate that the dimensions of the process zone are estimated
by the following equations:

Sp =M= ( M about 1) (4.1)
W=a 6 ( o about 2 ) (4.2)

Since W is able to be obtained from the J value, then define Jext.pz as the Jext
value evaluated at the contour whose representative distance ri is equal toW (Fig. 4.1).
Table 4.1 shows the ry of each contour. J value and load P at ri=W, and Jext.pz.
Further, in Table 4.1 the result of the different mesh divisions shown in Fig. 4.2

is also indicated as contour No. a. This mesh is used as a standard mesh for the
Round Robin Test of C-T specimen by the JSME PSC 21 subcommittee.

f

~

W

Fig. 4.1 Dimensions of process zone and contour

TABLE 4.1 Relation between r, 3, P, Jext.pz

Contour ry (=W) J P Jext.pz Jext.pz/riP=C
¢ 2 -1
No. i mm kJ/m MN/m kJ/m2 m
1 0.05 13.7 1.24 1.68 27
2 0.10 27.4 1474 471 27
3 Q17 46.6 2122 12.5 33
4 0.25 68.6 2.60 2315 30
5 0.34 93.3 2.91 2852 28
6 0.70 192, 3.38 63.6 27
a 1.0 275, 3.94 131. 33
mean 29

Jext.pz value seemed to be a function of P and r:
Jext.pz = Jext.pz( P, r)
= g pRerD ( C : constant ) (4.3)

The result of Table 4.1 indicates that C = 30, m=n=1. Substituting these values in
Eq. (4.3), we obtain

Jext.pz = C-P'r (4.4)

Fig. 4.2 Mesh type II

Further, substituting r=ﬁ¥2J/OY from Eq. (4.1), (4.2) in Eq. (4.4), next equation
is obtained

Jext.pz = E; JeP (4.5)

Fig. 4.3 shows the Jext.pz versus P-J.

Textpz=ONTR
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Fig. 4.3 Jext.pz versus PeJ
§5 SUMMARY

A compact type specimen is analysed by the finite element method using finite defor-
mation theory. The evaluation of the process zone is made by calculating Jext in
the near tip field. The results are summarized as follows:
(1) Jext.pz =C*P-r (c=30ml )
where
Jext.pz : Jext value evaluated at a
distance_r equal to W
P : load at W = r
r : representative distance of contour (=W)

contour whose representative
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(2) by using the relation
ri=w=2J/OY

Jext.pz can be expressed as follows:

Jext.pz = ZE-J-P
%y
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