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ABSTRACT

Polymer damage caused by microcracking and microvoiding can be readily defined for
fibers or one-dimensional effects. However, in two- or three-dimensions, the
problem becomes more complex because of isotropy group changes caused by strain
induced non-isotropic crack arrays.
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INTRODUCTION

In the last century, Kelvin (1980) noted that the present state of a materials
mechanical response was dependent on its entire past history of straining.
Fitzgerald (1980) discussed the one-dimensional case wherein structurally induced
damage must be measured from an equilibrium state to another neighboring
equilibirum state. It was, therein, pointed out that assuming an elastic or
viscoelastic range exists between the above two states of deformation, one can
uniquely define a degree of damage.

Essentially, in the one-dimensional case, the definition of damage is a scalar
quantity. Whether this scalar is taken as a stress ratio, a modulus ratio, or
where applicable, an equilibrium free energy ratio, is immaterial since an
equivalence exists between the various definitions.

This above simplicity is lost in the multi-dimensional case.

THREE-DIMENSIONAL DAMAGE

Second Order Damage Tensor

In the one-dimensional case, one might define damage, D, by the difference ratio

between the stress,(ro, in the undamaged fiber and the stress,(TD , in the damaged
D = ((TO— O'D )/cro-

It is assumed that Ty and Ub are measured at the same equilibrium elongations.
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Where o, represents a damaged state, in the usual sense, the values of D will vary
from 0, undamaged, to a value of 1, totally damaged.

An analogous expression in three-dimensions is in cartesian coordinates.
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where Bij is the Kroneker delta.

The damage is now a second order tensor and is uniquely valued, if, and only 1ifs
the stress o.. commutes with o.. Otherwise, the second term in Eg. (1) produces
different results depending on whether the O'D term is right or left multiplied.
Fourth Order Damage Tensor

In the one dimensional case cited above, the scalar damage defined can also be
written in terms of secant moduli €. = U’O/E and € = o_./€ where € is the
infinitesimal "test" elongation strain. Then the damage becomes D = (EO - ED)/eo
and is numerically identical to the previous scalar definition.

For the three—dimensiona]O case, the equilaventDmoduli or equilibrium elasticities
are denoted by capital ¢ for undamaged and C for damaged material. Thus, the
analogous expression for damage expressed as the moduli or elasticities difference
ratio is

ij ij Dyij Oymn -1 .
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The damage is now a fourth order tensor and is uniquely valued, if, and only if;
D
the elasticity or modulus tensor (0 commutes withé).

Further, neither the D.. of Eq. (1) nor the DY of Eq. (2) are symmetric unless
2 Ld. i k2
the second terms in their expressions commute.

The physical implication of the abox(e statement is that, for example, the matrix
representation of the product o0 "' in Eq. (1) could have unity values along the
diagonal and one off diagonal non-zero value. This result would imply no damage
in any of three orthogonal directions, finite shear damage in a plane normal to
one of the above directions and no shear damage in the other two normal planes.

Thus the matrix representation of Dij could contain up to 9 distinct

scalar values and that of D;i up to 36 scalar values.

BEight Order Damage Tensor

Warburg (1890) conducted experiments on copper wires and demonstrated that a
wire, previously twisted into its inelastic range and released, would, when hung
with a weight, show twisting as well as elongation.

Materials which show both a change in their response fuction(al)s as well as a
change in their isotropy groups after prior straining are said (Fitzgerald, 1975)
to exhibit metatropic behavior.

I shall, henceforth, use damage and metatropic somewhat interchangeably. If the
word damage connotes bad versus good to the reader, then substitute metatropic
wherever the word damage occurs.

It logically follows, from the Kelvin and Warburg ideas, that one should compare
the virgin and damaged elasticities of a material to determine both changes in
the specific moduli values and changes in the isotropy group of the material.

That is, an initially isotropic material, after being strained uniaxially into an
inelastic range would on subsequent straining probably exhibit transversely
isotropic behavior with reduced moduli in the direction of prior strainang.
Laboratory straining history could produce the xyndamaged elasticity C

defined preiously and later the damaged elasticity C i3ke could be determined.l‘jk'Q

To a first order, then, one could define a metatropic function(% relating the

two elasticities through
D N ijk 0
Cijkll (%mnop Cmnop (3)
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eﬂabove is of necessity an eighth order tensor relating the two fourth order
elasticities, just as the elasticities are fourth order relating the second order
stresses and strains.

Again, z%is not in general symmetric and in its greatest generality is
expressible as a 21 x 21 matrix with 441 scalar entries.

For the isotropic to transversely isotropic case mentioned earlier, however, Qﬂ
can be expressed as a diagonal 9 x 9 matrix with only 5 non-unity entries.
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