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ABSTRACT

Definition and meaning of concepts like "J integral" are given
without any assumption about material behaviour. The key of the work
is the field of "defect forces" and "defect couples" in a continuous
media. These forces and couples, which can also be called "material
forces" and "material couples" are related to the work done by a
particle moving through a solid. It is shown that the resultant of
all the defect forces included in a volume is the Jx integral compu-
ted on the surface surrounding this volume. A similar result is
obtained about the moment resultant. Conventional form of the princi-
ple of virtual work is not applicable to fractures mechanics because
equations of compatibility are not satisfied. A generalized form is
given, which is valid when (virtual) crack propagation is considered.
The virtual work of "material" forces is included in the generalized
form, and can be used as a new definition of J concept.

As an illustration application, a simple procedure is described
which allows to obtain the curve J-Aa (the so called J-R curve) from
only one experimental.
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INTRODUCTION

The J integral method suggested by RICE (1968) has received conside-
rable attention. This concept is not only used as a criterion of
onset of crack propagation, but also used to study propagation stabi-
lity (PARIS 1977). The definition and meaning of J concept can be
considered in different ways : the path integral, the variation of
energy with the crack length (Sumpter and Turner, 1976), the factor
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characterizing the crack type singularity (Hutchinson, 1968) . This
concept can also considered to be derivated from notions coming from
the electromagnetic field theory and extended to the mechanics of
elastic solids by ESHELBY (1970). Except for special circums-
tances (BILBY, 1977), the J integral is path independent only for
elastic material (linear or non linear) although Rice's definition
of J is applicable to more general materials and J is calculated for
elastic plastic fields. The aim of this paper is to give another
discussion of J without making assumptions about the behaviour of
the material (ROCHE, 1976, 1977).

The method can be considered as a generalization of the Energy
momentum tensor approach to solid mechanics (Eshelby, 1975) but with
very significant changes made to avoid any assumption about the
behaviour of the material. It is based on the definition in a conti-
nuous medium of a field of vectors having the dimension of a force.
These vectors are. in direct connexion with the work done by a mate-
rial particle moving through the solid. Such a displacement through
the solid may be called "material displacement"” and the related
vectors "material forces" or "defect forces". Such a concept of
force was also considered for the elastic behaviour only, by ROGULA
(1977) and by CASAL (1978) who names it "Suction force". In the
elastic case ESHELBY (1970) has also given a related discussion
applied particularly to forces on interfaces.

DEFINITION OF DEFECT FORCES

The aim of this section is to give the definition and the mathemati-
cal expression of defect forces. Like conventional volume body for-
ces and surface body forces (corresponding to conventional or spatial
displacement) it will be given expressions of volume defect forces
jx and surface defect forces Jx which are volume or surface density
of defect (or material) forces. But forces alone are not sufficient
and for a more complete discussion a defect couple must be also
considered, hence expressions of volume defect couples 1y and surfa-
ce defect couples Ty will be also given. Defect couples are like
conventional body couples in iron submitted to magnetic field.
Movement of a material particle will be considered through the
neighboring particles (Eshelby cutting and welding argument, 1975).
Due to that movement there is a variation of the stress working
density of the particle. Part of this variation is only a consequen-
ce of the geometrical change of the particle position. The balance
can be attributed to the modifications in the particles order
(material displacement). This part is related to defect forces or
defect couples. Its expression is the scalar product of the defect
force by the translation of the particle through the solid and/or
the scalar product of the couple defect by the rotation of the
particle in relation to the solid.

A point of the material will be identified by its cartesian coordi-
nates x; in the initial state (Lagrangian formulation). By the
action of body forces X. (per unit of volume) and Xj (surface for-
ces), the point is dispiaced to reach xj + uj (uj is the spatial
displacement), exhibiting a state of strain e.. and of stress 0,..
Obviously the internal forces (stresses) have done work, and thé&d
stress working density is W.
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Frog a ;igourous point of view, attention must be given to the
dgflnltlon of strain and stress. If u; and e.. are small, conven-
tional definitions can be used. If they are fdt small, ié is necessa-
ry to choqse the displacement gradient as the strain e:; = u; -+ andl
.the.B09551nesq nominal stress tensor as the stress, sol%hat %ﬁg
variation of stress working density can be written §W = o.. 6u

15 oein s
;n the ;trained state, if a translation dxk of a material particle
is gon§1dered, (dxk is a material displacement, it is to say a
variation of initial coordinates), there is a variation of the parti-
cle stres§ working density equal to Oij €34 k SXyx, which is greater
than the increase W, 6xk corresponding to~deometrical change only
Hence.the increase W in stress working density due intrinsicall éo
material translation éxk can be written y

SW = = ]
Ik 6Xk (1)

i =W o
i 'k T %3 fij,x (2)

ghere j,. is the dgfect force per unit of volume. By the same proce-
ure, the expression of surface defect force is found to be written
S e uy k) (3)
where T; = 055 n- and n: th i j i i i

: 197 9. By e normal in the jump direction (in case of
discontinuity)?2 or the dutside normal (body boundary) .
Now, if a rotation Swy of the particle is considered the variation

SW of stress working densit i insi i
' y due intrinsicall i
rotation can by written e L

SW = -
o lk 6wk

lk == e

(4)

( +

kmi in €mp 0pi Epm) 50

where 1y is the defect couple per volume unit, the notation €kmi

expressing the alternating tensor which is compl i i
. i etel
(cartesian coordinates). gt ey S

There are also surface defect couples which can be written

e Up Ty (o)

PATH INTEGRALS AS THE RESULTANTS OF MATERIAL FORCES

In two dimensional problems, the value of J i i
' : is given by a path inte-
gral. In three dimensional problems J is a vector (havzng Ehe

A comma followed by suffixes will denote differentiation with
ou,
respect to x, so that, for example u, . = o
i3 ij
2
In case of surface discontinuit i 2 2
. Y, W is the "jump" of stress
working, and ui,k the "jump" of strain gradient.



100

dimensions of a force), and the values of its components are given
by a surface integral. A very simple computation give the following
result :

J o= = fds=5 j. av + 3, ds (7)
k k v k 5 k

The resultant of all the defect forces contained in a volume V
(including defect forces connected with surface discontinuities Z)
is the J, integral computed on the surface S surrounding the volume
V.

In the same way, it is possible to compute the moment resulting from
defect forces and defect couples (relating to the origine for ins-
tance)

x + 1) ds = (A e B 0] a3
S \Y
+ (i
E

+ e X Jn) ds (8)

k kmn

Ly is one of the integrals considered by Glinther (1962) ,Knowles and
Sternberg (1972)and Eshelby (1975).

At this time, it must be pointed out that J and L are defined
without any hypothesis about material behaviour. It appears that
these integrals are only the resultants of defect forces and couples
which are expressions of the trend of material movements in the
body. As cracking is a typical material movement, it transpires that
defect forces and couples can be more representative fracture crite-
ria than J. The field of defect forces in the vicinity of crack tip
is more significant of local fracture conditions than path integrals
which may include other phenomena like the effect of thermal
stresses (ROCHE 1979a, 197%b, 1979c).

As far as fracture mechanics is concerned, it is valuable to examine
the distribution of defect force J along a notch (with free Bounda-
ries). This surface
defect force is nor-
mal to the surface,
and its value 1is
equal to the stress
working density W
(Rice and Drucker,
1967, Eshelby, 1970).
Due to the strain
concentration at the
bottom of the notch,
this area show high
values of j and the
resultant J is main-
ly characterising
the intensity of
defect forces in

FIGURE 1.
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that area.‘Thg smgller is the tip radius, the higher is 3k' and J
gives an indication of the intensity of defect forces at the notch
tip or at the crack tip when the radius is very small.

ENERGY MOMENTUM TENSOR AND ITS COUPLE STRESS COMPANION

Equations (7) and (8) can be interpreted as follow : the resultants
gf all the defect forces and couples applied to a solid (or part of
it) , are equal to zero. They are like equilibrium equations of the
body, but defect (or material) forces play the role of conventional
forces. Hence an attempt can be made to introduce what correspond to
a stress tensor. Usuglly, the energy momentum tensor Ops (well known
in the electromagnetic field theory) is introduced (Eshelby, 1970)

By slii= .= :

e MRpgne 8 e s 620
where Skj is KRONECKER's tensor. Such a method allow to write equi-

}1br1um equations, but a more comprehensive analysis shows that is
is necessary to add a couple stress :

g

N = :
oi = €ijk %ip "k (L)

in order to obtain the complete set of equilibrium i
COSSERAT media (1909). g e

@ ! e o g e
ki3 - Ik Sleguilaut T 0 i
A_, LSl v 08 A.n +T1I, =0
jolaiiie) Gt 5 ket vikes) pi T p ol

Obviously, these equilibrium equations can be translated to a mate-
r}al fgrm of the principle of virtual work (CASAL, 1979). The mate-
r}al virtual displacement (translation 68x) and rotation 8Qy) is the
dlsplgcement of material particles through the body. In otﬁer words
material displacement is the flow of material properties through thé

godykincluding flowing of holes, discontinuities, heterogeneities,
racks., .o

GENERALIZED PRINCIPLE OF VIRTUAL WORK

The conventional form of the principle of virtual work is only rela-
tgd to conventional forces Xj, and only conventional (spatial)
d}splacements u; are considered. It must be pointed out that virtual
dlsplacements duj must satisfy equations of compatibility. Unfortu-
nately, in Fracture Mechanics, it is necessary to consider virtual
c;ack propagation and such a displacement do not satisfy compatibi-
;1ty equations. Conventional form of the principle of virtual work
is not applicable to Fracture Mechanics. A more general form, taking

into consideration material displacement must be used. This form is

easily deduced from the preceeding results :
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SW dv = X. Su, ds - (3., 6%, + 1. 8§@.) dv =
i i i
(12)

7

where I means the discontinuity surfaces inside the volume V (like
holes, cracks).

A well known particular form of this equation can be written when
the only material displacement is a uniform translation da along x
axis. Such a simplification is too restrictive for crack propagatidn
is not identical to crack translation and a more general approach is
preferable. In practical cases it can be assumed that material
displacement distribution can be defined by a finite number of para-
meters ay and the material work variation can be written Judaa,
where J, are parameters defining defect forces distribution (Jy is
dual of ay). The general form of the principle of virtual work can
be written

SWdv = X 6u_ - J_ da (13)
v o o o o

where u, are conventional displacement parameters (or generalized
displacements) X, conventional force parameters (generalized forces),
a, are material displacement parameters (or generalized material
displacements) and J, defect forces parameters (or generalized
defect forces). This equation give another definition of J as a set
of scalars J, connected to a set of geometrical parameters a,
describing crack propagation.

The current practice is to describe crack propagation with only one
parameter a (crack extention) and consequently to consider only one
parameter J. Such a simplification seems working fairly in many
practical problems, but cannot be applied in every cases. As an

example, in order to get an estimation of the effect of sample thick-

ness it can be useful to define crack propagation by two parameters:
ayp in the middle plan and ap at the free surface, consequently J
concept is a set of two quantities Jn (plane strain) and Jy, (plane
stresse).

PRACTICAL DETERMINATION OF J VALUE

Examination of the current practice

If crack propagation can described by one parameter only, there is
only one J quantity to know, related to the simplified equation

W dv = &V = X8u - J8a (14)
v

In such an equation the geometrical state of the cracked structure
is defined by two variables u and a. There are two other variables
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(dual variables) X and J and the scalar function V. A first question
arise about these variables and functions : "Are they well defined
functions of u and a ?" in other words "the values of vV, X, J are
they dependent only on the values of a and u ? is there an effect of
the path used in the u-a field ?". If such an assumption is true for
elastic materials, it is not proven for elastic plastic materials,
but it is approximately verified in most of the practical cases.
Experimental verification can be achieved concerning the path depen-
dence of X value by comparing values obtained at the some a and u

values with different methods of crack advance (natural propagation
or machining).

To okbtain the J value as a function of the increase in crack length
(J - R curves) by experimental testing of specimens, such an assump-
tion is made (V is only a function of u and a). Therefore V can be

measured for constant crack length and J is obtained by derivation :

X

- oV
vV = X d A
- Ula = constant g da |u = constant s

Historically these equations are the principle of the first method
used to obtain experimental value of J (Landes and Begley, 1972).
Such a method is costly and difficult to perform, therefore other
methods have been proposed (Rice and co workersl973, Merkle and
Corten 1979). The analysis of these methods show that they are based
on the same type of assumption : If load displacement curve (X-u) is
known for one given value of crack length a, all other load displa-

cgment curves (for other values of crack length) are known (ROCHE,
1979 .

As an example, it is often assumed that the load is given as the
product of a known function A of the crack length by a function ¢ of
the displacement (depending on the material), this assumption give
the expression of J

1 u
A—A Xdu (16)
(o]

X = A(a) o (u) g = -

Wl

(B being the thickness). This result is only valid if the crack
length does not vary during the test. If crack propagation occurs,

some correction must be taken into account (see Roche 1979 for more
general laws).

Procedure to got J. R. curve with only one sample

It must be pointed out that the parameter a describing the crack
propagation is often considered as the "crack length", but such an
assimilation is not obvious. From a theoritical point of view, this
assimilation is arbitrary and from an experimental point of view,
crack length is not easy to define. During crack propagation, new
created surface is not always flat and crack tip is not often
straight. As a consequence, great difficulties arise about crack
length measurement. This is especially true for determination of
J-R curve giving Jas a function of Aa. Different methods have been
proposed (compliance, electrical properties) but they are not easy
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to use and their reliability is questionnable.

Recently, it has been noted that the hypothesis used for the deter-
mination of J value can be also used for determination of the value
of the crack length (Ernst 1979, Milne and Chell 1979, Roche 1979).
What has to be done is to obtain experimentally the function ¢
corresponding to the sample tested. For a given shape this function
is only depending on the material itself. For a given type of mate-
rial, the general features of the function ¢ are known (from the
results of preceeding tests) but there is a need for adjustements
taking into account the material properties variations. This can be
done with the help of the results of one experimental test.

Experiment on one sample give two indications about crack length a
first the initial value ao (before propagation) and then the final
value ag. As the propagation does not occur immediately, the begin-
ning of the curve ¢ (u) is known. The final point corresponding to
af is also known. These indications are sufficient ot draw the curve
(if the type of material is known). Practically it is more conve-
niant to use the "corrected load" X¥ which is proportional to ¢ :

* A (aO)
> GRS ¢ m = A (ao) o (u) (170

The procedure is indicated on figure 2. It has been successfully
applied and validated as a very efficient, quick and inexpensive
method. The J-R curve can be obtained from only one test on one
sample, if the type of material is already known.

Corrected load curve X* (u)
Corrected X*(u) . ~ identical to X curve at small value of u
ES T - reach N* such PN*=PN Alag)/Algs)

- similar to X® curve obtained
for the type of material

Load X

- crack length a given by

measured X(u) Ala)=Alao) X/X*

u
X*du
o

- J given by
P J=-1/B Ala)/Ala,) j

deflexion u

Fig. 2 Procedure J-R curve
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CONCLUSIONS

J can be introduced on the basis of the concept of defect forces jj
(and defect couples) which are connected to the displacement of the
material particles through the body (material displacement). The
meaning of the defect forces is more general than that of the J inte-
gral. Fracture Mechanics requires a more general form of the principe
of virtual work than the conventional one. A complementary term must
be introduced in order to take into account the material displacement
effects. From this point of view, the increase of crack lenght in
only a parameter representing the material displacement field and J
is the "defect load" parameter associated with it, obviously such a
lecture is only a simplification. Representation of crack growth by

a set of several parameters can be also considered, as a consequence
J is extended to a set of several scalars. The practical use of the

J concept in Fracture Mechanics implies several assumptions about
material and structural behavior. This is especially true for the
measure of J values. Nevertheless, it is possible to extend their
application to measure crack growth, in order to get the J-R curve
from only one experimental test.
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