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ABSTRACT

By the use of complex potentials and conformal mapping, we derive the asymptotic
equations of the kinked crack problem when the length of the kink goes to zero. We
give the analytic solution of the problem by meansof a series which is proved to be
strongly convergent. This solution agrees very well with those obtained by Bilby and
others (1977) or Wu (1978) and it enables us to discuss some criteria of rupture in
mixed mode.
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INTRODUCTION

There are many works devoted to the branched (or kinked) crack problem in a 1li-
near isotropic elastic body in the condition of plane strain (Dudukalenko and Roma-—
lis, 1973; Hussain and others, 1974; Palaniswamy and Knauss, 1974; Chatterjee, 1975;
Bilby and others, 1975 and 1977; Wu, 19785 Lo, 1978; ...). The knowledge of the
stress—intensity factors kj, ky at the tip of the secondary branch and their rela-
tion with the remote stress-intensity factors K_, K of the main crack of length
2 (fig. l.a) are of great importance for the analysis of the fatigue crack propa-
gation in mixed mode.

The asymptotic case when the length s of the secondary branch goes to zero has
already been analysed by Bilby and others (1975 and 1977) and Wu (1978). In this
paper we study the same problem by another approach. We will start from the equa-
tion derived by Hussain and others (1974) for a finite length s. By means of the
double scale technique (as usual in fluid mechanics) we derive the asymptotic equa-—
tion in a simple manner and we solve it by the series technique.

107



108
INTEGRAL EQUATION OF THE PROBLEM

Let the infinite body containing a stress-—free kinked crack, be loaded at infir-
nity by the stress S = Ga2 - i 012, for which the stress intensity factors of a
straight crack of length 2£ would be K, = i K.. =5 Jrl . Using the notations of
Dudukalenko and Romalis (1973) we conslder the  function z = w(&) which maps the
exterior (R7) of the unit circle \El - 1 onto the physical plane with a cut along
the kinked crack with the angle mml between the two branches
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The crack and its tips or corners are mapped into the points a, b, ¢, d of the
circle (fig. la,b). From the complex potentials of Muskhelishvili d(z), Y(z), we

define new complex potentials e(g) = dw@l, vE) = Y[ w(E)] . The boundary
conditions at the free surfaces and at infinity are all satisfied by the function

¢(£) solution of the integral equation ( Hussain and others, 1974)
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where T = S/4 ,
the arc C.. In other words, the contour of inte%gation
C. and the small clockwise semi-circle around e (figs
fictors at the tip of the secondary branch are defined by
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As a first approach one can define the limiting stress—-intensity factors by
k*(wm) - i k*¥(mm) = 1im (s~>0) kl(s,nm) w & kz(s,nm). A more attractive method is to
derive directly from eq. (2) the asymptotic &quation (s*0) for the function ¢ (&),
then to compute the stress intensity factors from the new function.

Wu (1978) has obtained the same equation by a different method from ours.

ASYMPTOTIC EQUATION

Since o, ~ 0 when s > 0 we make use of the double scale technique which magnifies
both variable and function

gt = {%:10% £ or £ =ce , tef-1, 1]
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Inserting (4) in eq. (2) and dropping the terms of higher order than 0(a), we

obtain the following equation
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Equation (6) is the
: i same as Wu's equation i i i
ve e e becomé with slightly different notations. The
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Fig. 5 i
ig. 1 : (a) Physical z-plane of the kinked crack.

(b) Mapped &-plane and path-integration Cl=arc(abc)

(¢) Auxiliary t- g0t
y t-plane magnifyi :
and Path-integratiOng+ ying the neighbourhood of £=I

SOLUTION

Let us write the : i
ho(t) = S(t2-1)/2 aiguazloghé6int2g§2§ form h(t) = ho(t) + Lh(t) for t€l” with
and oth . 5 operator. Followi

others (1979), introducing the norm of uniform coniZ;ZEnzzeoZZ;kfgf i

ro ;
prove that the operator L satisfies the inequality el s

(8) sin T
Il Ehl < 210 T
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where the constant A = sinmm/m(l-m 1s less than 1 since 0 m i. Inequallty
/ ( )
( ) : |
’ i :
8 shows that the operator L is a contraction, hence the solution of (6 can be
exp:essed n term of the strongly convergent seriles ( )
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where LP =L Lp_] i i 1
e lowér Se;iiiiiziepgitgraSed integral operator. Once the density h(t)
is determined, we calculate the
value h(m) from (6)

and we i i
express the stress—intensity factors in the linear form
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where the K.. only depend on the value of the angle mm.
.1

RESULTS

We compute the series (9) by dividing thg arc.I‘+ in N = 100 n?des 12rsuC:03 way
that their angle seen from the point m varies 11n?ar1y. We'obtzli a Zerisgif
convergence of the seriesto within three digits with a serieso ‘enll L
mn> 150° and two terms if mm< 50°. The same acc?racy was pract%cav.y gt
with N = 150 or N = 200 nodes. The res91ts show§ in Table 1 and(ig7;;g;nd,wu
in very good agreement with those obtalngd by Bilby apd o;herz R e
(1978). We also have plotted in dotted 11?es of the Fig. and
K.j corresponding to one term (ho) of series(9)
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K]l(~m)=Kll(m), K2l(—m)=_K21(m)

—Klz(—m)=K12(m), KZZ(—m)=K22(m)

Fig. 3. Stress intensity factors

K]l’ K2] in mode L.

Fig. 2. Stress intensity factors

KIZ’ K22 in mode IT.
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ki nk kink

angle| X1 K1 K12 ) anclel . S Ror Kig K52
geil 0 0 1 50° | 0.7479| 0.3431|-1.0665| 0.4872
10° | 0.9886 | 0.0864|-0.2597| 0.9764 60° | 0.6559| 0.3696|-1.1681| 0.3077
20° | 0.9552| 0.1680|-0.5068| 0.9071 70° | 0.5598| 0.3788|-1.2220| 0.1266
30° | 0.9018 | 0.2403|-0.7298| 0.7972 80° | 0.4640| 0.3718|-1.2293|-0.0453
40° | 0.8314 | 0.2995[-0.9189| 0.6540 90° | 0.3722| 0.3507|-1.1936|-0.1988

Table 1

[t is worthwhile to notice that eqs.(10) agree very well with the exact nume-
rical solution for 0 < m <1/2. The accuracy is within 27 up to kink angles as
large as 40°. This agreement can be compared with that obtained by using Nuismer's
formulae (1978) solving an approximate problem (see also Howard, 1978).

For high value m®1 we observe that Kll < 0, hence the crack closure must be

considered at the tip of the secondary branch in this case.

ENERGY RELEASE RATE

We refer to the excellent analysis of Wu (1978) and we confirm the numerical
equality G = (1—v5(kf2 + kﬁz)/E with a higher accuracy (0.2%7 instead of 0.7%
at a = 90°, 4% instead of 10%Z at 150°). The discrepancy at high value seems to be
thﬁ result of a singular integration of the crack closure energy. The curves
kT + k*“ (normalized quantities) versus the angle o are presented in the figure 4,
for mode I loading (KI = KII = 0) and mode II loading (KI =0, KII =1).

Ac

;ng e
Fig. 4. Variation of the energy release rate G
with the kink angle in modes I and II.
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CRITERION OF CRACK BRANCHING

The present analysis gives a linear relationship between the initial stress-
intensity factors K;, Kyy and the stress-intensity factors kl’ k2 just after crack
branching. Hence any criterion of crack branching angle may be expressed in terms
of either K;, K;; or k kE. However it seems more natural to formulate a crite-—
rlon in terms of the 1ocal parameters kl’ k; rather than of the loading parameters

Bir by
Two interesting criteria may be expressed as follows
- the crack branching angle correspondsto the maximum of energy release rate ;
- the crack locally propagates in pure mode kT (k; = 0).
*2

g . i 2 y 5
Since G is proportional to kT th kz , a possible equivalence between the men-
tioned criteria requires that

(11) k*l"(nm) =0 = k; (Tm) =

In mode II loading, we found that ki*(76 6°) = 0 while k (77.3°) = 0. In the
case of uniaxial tension at infinity, in the direction Y w1th respect to the
main crack, the crack branching angles o = Tm predicted by the energy criterion
and the pure mode I criterion are presented in figure 5, with a deviation less
than 17. Similar results were obtained by Bilby and Cardew (1975) ; their figure 2
(for X = 0) agrees closely with figure 5.
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Fig. 5. Variations of the crack branching angle (-a) with the
direction y of the remote tension T, according to the
k¥ maximum criterion and the pure mode k* criterion.

CONCLUSION

We conclude that there is good coincidence between the two criteria. The mathe-
matical identity between the criteria remains an open question, but not a fundamen-
tal question, from the practical point of view.
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