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ABSTRACT

This paper develops a finite element method for determining the stress intensity
factors along the edge of a crack in an arbitrary three-dimensional body. A
special element is placed around the crack front and in each special element the
stresses and displacements are derived using the asymptotic nature of the stress
and displacement fields near a crack tip.

As illustrative examples the problems of a semicircular surface flaw and an inter-
nal penny shaped crack are first considered. In each case the computed values of
the stress intensity factors are in excellent agreement with known analytical
results. The repair of the surface flaw is then considered using a bonded overlay
of composite material, and the effect of the overlay on the stress intensity
factors is discussed.
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INTRODUCTION

This work forms part of a general research program into the repair of aircraft
structures, using composite material, currently underway at the Aeronautical
Research Laboratories, Australia, (Baker, 1978; Jones and Callinan, 1979, 1980).

To date a large number of components have been repaired; these include wing skins,
wing planks, and wheels. However, where as the previous studies have only been
concerned in modelling the repair of cracks in thin metal sheets, the present paper
is primarily concerned with the repair of surface flaws in thick structures.

We begin by developing a special crack tip element which may be used to obtain the
stress intensity factors K1,Ky and K3 along the edge of a crack in an arbitrary
three-dimensional body. This element is then used to investigate the effect that

a bonded overlay of composite material, covering a surface flaw, has upon the stress
intensity factors along the edge of the flaw.

STRESS AND DISPLACEMENT FIELDS IN THE CRACK ELEMENT

Let us consider an elliptical flaw, see Figure 1, and define a system of x y z
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co-ordinates such that the xoz plane lies in the plane of the crack and the y axis
is directed perpendicular to this plane. If the semimajor and semiminor axes of
the ellipse are of lengths a and b respectively then the equation of the crack
front is given by

x2/a% + z2/p2 = 1 (1)
Let us also define a system of curvilinear co-ordinates, r,0 and ¢ such that

y=rsin 6, x =acos ¢ + r cos 6 cos 6', z =b sin ¢ + r cos 6 sin 6'(2)

Li 1
where cos 8' = b cos ¢/ﬂo , sin 8' = a sin ¢/noi (3)

Z cos2 ¢ + a sin2 0 (4)

and T =b
In the r,6, and ¢ co-ordinate system, see Figure 1, all points on the crack front
have r = 0 and the parametric equation of the crack is

Xx =a cos ¢, z =Db sin ¢ (5)

Let us now consider a special crack tip element which is bounded above by the
plane ¢ = ¢_ (=constant) and below by the plane ¢ = ¢ 41 (=constant). The element
is polygona? in planview and surrounds the crack fron®'~ This element is shown in
Figure 2 for the special case when a = b. It is bounded by two planes both of
which have y = const. and by two planes, which at the planes ¢ = ¢ and ¢ = ¢

have the same minimum distance from the crack front and which are perpendicular

to the planes y = const. When a = b, as shown in Figure 2, the planes ¢ = const.
pass through the origin but for a # b they do not.

Within this element we will consider the stress and displacement fields to be

given by the first term in their asymptotic expansions, see Sih and Liebowitz
(1969) .
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Here O1¢ is the coefficient of Kl in the expression for o etc.
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Figure 1. Stress components near periphery of crack, n and t are normal
and tangential respectively to the periphery of the crack at P
and lie in the crack plane,

e
™ Crack front

Figure 2., Geometry of the special element
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In a similar fashion the displacements can also be expressed as
u, = Kyjuy, + Koupy, up = K3uzg, uy = Kl“ly + K2u2y (18)

where for exact details of the functions Uyps Uy, etc. the reader is referred
to Sih and Liebowitz (1969), page 149.

We now need to assume a functional form for the dependence of the stress intensi-
ty factors upon ¢ within the element. Perhaps the simplest, but by.no.means the
only, such approach is to assume that Kj,Kp, and K3 vary linearly within the
element, i.e.

Ky (9) = KygVp (9) + Kygyg¥p(9) (19)

with similar expressions for Kj(¢) and K3(¢). Here
vp(e) =1 -0 %) gy =8 be (20)

Vo1 ~ % Sty =19

This returns the values of KjerKpe and K3, at the playe ¢ =‘¢¢ and the values of
Kie+1lr Kpe+1: and K3goyuy at the plane ¢ = ¢e+l' T§u§ in addltl?n to the degrees
of freedom UG VW Wy g Wyp oW associated with rigid body motion the special
element will have as degrees §¥ freedom the values of KierKoer K3erKjet1rKoat1r
K3e+1- The vector A,which contains these degrees of freedom, we define as

AT = K1erKie+1/K2erK2e+11K30rK3e+1 1107 V0 W0 rWxy 1Wyz Wy (21)

T ; . e .
As shown by Jones and Callinan (1977) the "primitive stlffnesg matrix K- for this
element may be obtained by differentiating the strain energy with respect to each

of its elemental degrees of freedom. On carrying out this differentiation it is
found that each element of the stiffness matrix is of the form

Kij = % J J { Fi4Jdrded¢ (22

where E is Young's modulus, J is the Jacobian (= r(wo% + r cos 9 a b/no)) and
where for i,j g 2.

7
Fij = wiwj{(l —v2) (cln + cly)2 + 2(1 + V) (Tlny - Ulncly)}
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and Fji = Fij (24)
for all values of i,j given above while for all other values of i.j, Fij is zero-

Here the triple integral is over the volume of the special element and is, in
general, evaluated numerically.

So far we have primarily been concerned with determining the stiffness matrix for
the element treating the vector A as the vector containing the degrees of freedom
of the element. However, in order to develop an element which is readily

compatible with most finite element packages it is necessary to derive the stiff-
ness matrix treating the nodal displacements, at each of the nodes of the element,

as the basic degrees of freedom. This can be done using the procedure developed
by Jones and Callinan (1977).

Let us define the displacements in the X,y, and z directions by u,v, and w respec-
tively. If the special element is chosen to have m nodes then, at the ith node

(L < i < m) the cartesian displacements uji,Vi, and wi are related to un,uy, and

ut by the formulae

u; = un(ri,ei,¢i) cos ei' + ut(ri,ei,¢i) sin ei' +ug + ozjwy, - YWy (25)
= [¢] =
vy uy(ri, i’¢i) + A Ziwzy + xiwxy (26)
o Ly | [ L} =
Wy = un(ri,ei,¢i) sin ei ut(ri,ai,¢i) cos ei t oWy ¥ yiwzy X W (27

where ri,8i,¢i are the curvilinear co-ordinates of the ith node on the boundary of
the special element and X;/¥is and Zz; are the cartesian co-ordinates of this node.
Substitution of the expressions for up,ut, and uy, as given by equation (18) into

equations (25) (26) and (27) now results in a magrix equation of the form LA =8¢

T
where & = ETASTATA DA SV S AN (28)
and L is a transformation matrix of dimensions 3m X 12. sSince for the sake of
accuracy, the special element will be coupled to the rest of the structure at more
points than there are degrees of freedom we use the least squares technique to
minimize the discontinuity of the displacements across the boundary of the special

element. This procedure is described in detail by Jones and Callinan (1977) and
gives

3= @y Ts (29)

so that when the nodal displacements uj,vj, and w; are considered as the degrees
of freedom then the element stiffness matrix becomes ((LTL)'lLT)TK(LTL)'lLT.

This formulation of the stiffness matrix may be used in conjunction with any of
the standard finite element routines. When recovering the values of the stress
intensity factors the procedure used by Blackburn and Helen (1977) which uses
nodes on the crack face, coupled with the method of Chow and Lan (1976) which
allows for a crack tip element of finite size, was used.

ILLUSTRATIVE EXAMPLES

As illustrative examples of this approach let us consider the following problems.
An enclosed penny shaped crack, of radius 12.7 mm, located with its origin at the
centre of a square bar of magnesium alloy, the length of the sides of the bar
being 127 mm, and a semi-circular surface flaw of radius 12.7 mm centrally

located in a rectangular bar of magnesium with dimensions 127 mm X 127 mm X 63.5 mm
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(see Figure 3). In each case the bar is subject to a uniform tensile stress of
68.9 MPa. The Young's modulus of the block is 44.7 MPa and its Poisson ratio is
0.32.

In analysing the internal penny shaped flaw the symmetry conditions enabled us to
model only one quarter of the bar. The mesh consisted of 278 nodal points with
198 elements and 3 special elements each of which is rectangular in plan view and
has 10 nodal points. This mesh is shown in Figure 4. The value of the stress
intensity factor K, at points A and B, as shown in Figure 3a, was found to be
Kl/g/a =i (cf.%he value of 1.13 for an infinite body and the value of

1.15 allowing for a magnification of the previous value due to finite width
effects). Here ¢ is the applied stress (= 68.9 MPa) and a is the radius of the
crack (= 12.7 mm).

When analysing the semi-circular surface flaw problem use may also be made of the
symmetry considerations so that the mesh used in the previous problem may also be
utilized for the present problem.

The value of the stress intensity factor obtained at point B, the point of deepest
penetration, was Kl/U/a = 1.19 as against the theoretical value of 1.18 for a
semi-circular surface flaw in a semi-infinite block and the value of 1.20 allow-
ing for a magnification of this value due to back face effects. The value of the
stress intensity factor obtained at point A, on the free surface, was Kl/o/a =
1.38 as against the value of 1.39 for a semi-infinite block and the value of

1.41 allowing for a magnification due to finite width effects. In both cases the
accuracy of the solution is sufficient for most engineering purposes and the
error was never greater than 3%. Furthermore in the case of a through crack the
analysis is similar to that given by Hilton (1973), and coincides with the
analysis presented by Jones and Callinan (1977) in the case of a through crack in
a thin sheet.

One very important fact, which should be stressed, is that for a part circular
crack the volume integration in equation (22) simplifies to the extent that the
r and § integration may be carried out analytically. This leaves only the inte-
gration with respect to ¢ to be evaluated numerically. This simplification is
due to the fact that for a part circular crack a = b, and

J=1r(a+rcos 8), 6' = ¢, Ty = a (30)
Full details of this simplified approach are given by Jones and Callinan (1978).
REPAIR OF SURFACE FLAWS

Let us now turn our attention to the repair of the surface flaw discussed above.
Interest in this problem was generated by the boron fibre repair schemes developed
at the Aeronautical Research Laboratories, Australia, for application to the
Macchi landing wheel, see Baker (1978), and the repair scheme currently being
developed, by the authors, for the main landing wheels of the Mirage IIIO. Both
wheels develop fatigue cracks, the fatigue marking correlating quite well with

the number of landings. 1In the case of the Macchi the wheels are usually dis-
carded when the crack reaches a length of approximately 25 mm. The repair for the
Macchi consists of two uniaxial boron epoxy laminate patches, the direction of

the fibres being perpendicular to the crack, positioned so that both ends of the
crack are covered (see Figure 5). This repair procedure is now the standard
repair for the Macchi jet trainer in the Royal Australian Air Force and whereas
without patching wheels tended to be rejected after about 60 landings, the
repaired wheels last for at least 900 landings.
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Figure 3, Geometry of the surface crack, the embedded penny shaped
flaw, and the repair,
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Figure 5, Repair to a Macchi wheel

Consider the surface flaw described in the previous section which is patched by a
uniaxial boron-epoxy laminate of dimensions 50.4 mm X 29.2 mm the thickness of the
patch being treated as a variable (see Figure 3(c)). The laminate moduli are as
follows E; = 208.1 GPa, Ep = E3, E1/E; = 8.18, G1p = Gy3 = 7.24 GPa.

G,y = 4.94 GPa, Y15 = Y33 = 0.1677, Y3, = 0.035

where the l-axis is the fibre direction, the 2-axis is parallel to the crack, the
3-axis is in the thickness direction.

The patch is bonded to the magnesium alloy block by an adhesive, which is treated
as being isotropic, with a shear modulus G; of .965 GPa and a Poisson's ratio of
0.32.

This problem is an idealization of the actual repair, being developed by the
authors, to be applied to the Mirage IIIO landing wheel in as much as the flaw in
the wheel and the block have the same length at the surface. Both the block and
the wheel are a magnesium alloy, the adhesive layer is the same thickness in

both cases, and the actual repair will also be a uniaxial boron-epoxy laminate of
approximately the same dimensions. As above the block is subjected to an applied
uniform tensile stress. This is consistent with the state of stress in the wheel
which, as determined by a detailed finite element analysis of the wheel, in the
region of the flaw in an uncracked wheel, is predominently in tensionwith a very
small bending field. The block was modelled as described, while the adhesive

was modelled using 43 triangular prism elements and the composite was modelled
using 86 triangular prism elements which have an orthotropic stress-strain law
and which were based on the analysis presented by Barker and others (1972). The
total number of nodal points involved was 381.

The results of this analysis are shown in Table 1 where the ratio of the stress
intensity factors Kp/Ky, the fibre stress concentration at the crack gg/a, the

31
shear stress concentrations in the adhesive at the crack 1c¢/0 and at the ends of
*the patch T,/0 are shown for various patch thicknesses. Here K1p and Kjy are the

values of the stress intensity factors after and before patching respectively.

TABLE 1 Repair of a Semi-Circular Flaw

Patch
thickness

(mm) .508 mm .762 mm  1.27 mm
Value of
Kp /. Ku
(1) surface, A .504 .459 .426
(2) bottom, B .835 .804 .78
og/0 10.5 8.8 7::9
/0 .829 32 .70
Te/O « a1 .65 71

From this table we see that patches have a significant effect on the stress
intensity factor at the crack-free surface intersection. However the stress
intensity factor at point B, the deepest point, is much less effected by

patching. We also see that at the crack the stress concentrations in both the
fibre and the adhesive are very high. The high stress concentration in the fibres
means that these repair schemes can be best used when the state of stress in the
uncracked structure is relatively low. This is the case in the Mirage landing
wheels where the cracking is primarily due to the presence of inclusions, typical-
ly 1 mm in diameter, and the high residual stress developed during the casting
process. The high shear stress concentration in the adhesive at the ends of the
patch is less important since as explained by Jones and Callinan (1980) this
stress concentration can be removed by scarfing the patch.

Let us now turn our attention to the effect that different patch locations have
upon the reduction in the stress intensity factor. This is an important problem
since as can be seen from Figure 5, the geometry of the structure sometimes makes
it difficult to cover the entire length of the crack so that a decision has to be
made upon where to place the patches and how much of the crack needs to be
covered. Table 2 shows the effect that placing two patches of dimensions

50.4 mm X 14.6 mm X 0.762 mm, each one of which is exactly half the size of the
previous crack covering patch, at various distances from the centre of the flaw.
The patches are placed symmetrically about the centre of the crack.

TABLE 2 Effect of Patch Location

distance of 7.3 mm 14.9 mm 18.7 mm  21.3 mm
patch centre flaw completely 40% of flaw
from centre of flaw covered covered
Klp/Klu
(1) surface .459 .526 .702 916
(2) bottom .804 .884 +933 «959

From Table 2 we see that although covering the entire length of the crack is best,
when 40% of the crack has been covered a significant reduction in the stress
intensity factor Klp is achieved at the crack free surface intersection. As a
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result it seems reasonable to recommend that a minimum of say 40-50% of the crack
be covered.

So far we have primarily been concerned with a semi-circular surface flaw of
radius 12.7 mm. We have seen that patching this flaw has relatively little effect
on the stress intensity factor at B the point of deepest penetration. However it
is reasonable to believe that for a semi-elliptical surface flaw, with the same
length at the surface, the effect of a patch on the stress intensity factor at
B increases as this point approaches the free surface, i.e. as the aspect ratio

of the ellipse increases. This was partially confirmed by modelling the flaw in
the block as a semi-elliptical surface flaw with a total surface length of 25.4
mm, as before, and a maximum penetration of 6.3 mm. (This shape of flaw closely
resembles the flaw in the Mirage wheels). In this case the ratio of the stress
intensity factors Klp/Klur for a patch thickness of 0.762 mm, were found to be .40
at the free surface and .63 at the point of deepest penetration. This shows that
for patched flaws increasing the aspect ratio of the flaw has a much more
dramatic effect on the reduction of the stress intensity factor at the point of
deepest penetration than it does on the reduction of the stress intensity factor
at the surface.

CONCLUSION

In this study we first developed a simple finite element method for analysing
flaws in a three dimensional body. The special element may be of any shape and
for circular, or part circular flaws, requires only a limited use of numerical
integration routines.

This element was then used to investigate the repair of surface flaws. The analy-
sis revealed that patching these flaws with a bonded overlay of composite material
was an effective method for reducing the stress field at the crack front. We

also saw that for semi-elliptical surface flaws patching is far more effective for
cracks of high aspect ratio (i.e. surface crack length/maximum penetration) .
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